Válasz:
Magyarázat:
Mivel a
Ezért ez egy rendszeres vízszintes parabola és csúcs
Ezért az egyenlet típus
Mint a csúcs és a fókusz
grafikon {x = -1 / 8 (y + 1) ^ 2 + 5 -21, 19, -11, 9}
Mi a parabola egyenletének csúcsformája a (12,22) fókuszban és y = 11 irányban?
Y = 1/22 (x-12) ^ 2 + 33/2> "a" színes (kék) "csúcsformában lévő parabola egyenlete. szín (piros) (bar (ul (| szín (fehér) (2/2) szín (fekete) (y = a (xh) ^ 2 + k) szín (fehér) (2/2) |))) "ahol "(h, k)" a csúcs koordinátái, a "" pedig "" egy "" pontot jelent "" (xy) "parabola" "esetén a fókusz és a irányvonallal azonos a" (x, y) " a "szín (kék)" távolság "" a "(x, y)" és "(12,22)
Mi a parabola egyenletének csúcsformája a (17,14) fókuszban és y = 6 irányban?
A parabola egyenlete a csúcsformában y = 1/16 (x-17) ^ 2 + 10 A csúcs a középpontban van a fókusz (17,14) és az y = 6: közvetlen irányban. A csúcs a (17, (6 +14) / 2) vagy (17,10): A csúcsformában a parabola egyenlete y = a (x-17) ^ 2 + 10A direktrix csúcstól való távolsága d = (10-6) = 4:. a = 1 / (4d) = 1/16: .A parabola egyenlete a vertex formában y = 1/16 (x-17) ^ 2 + 10 gráf {y = 1/16 (x-17) ^ 2 + 10 [-80, 80, -40, 40]} [Ans]
Mi a parabola egyenletének csúcsformája a (-4, -7) fókuszban és y = 10 irányban?
A parabola egyenlete y = -1 / 34 (x + 4) ^ 2 + 1,5. A fókusz a (-4, -7) és a közvetlen irány y = 10. A Vertex a fókusz és a directrix közepén van. Ezért a csúcs (-4, (10-7) / 2) vagy (-4, 1.5). A parabola egyenletének csúcsformája y = a (x-h) ^ 2 + k; (h.k); csúcspont. h = -4 és k = 1,5. Tehát a parabola egyenlete y = a (x + 4) ^ 2 +1,5. A csúcs távolsága a közvetlen iránytól d = 10-1,5 = 8,5, tudjuk, hogy d = 1 / (4 | a |):. 8,5 = 1 / (4 | a |) vagy | a | = 1 / (8,5 * 4) = 1/34. Itt a irányvonal a csúcs