Válasz:
Kérjük, olvassa el a magyarázatot.
Magyarázat:
Itt,
Hogyan kell bizonyítani (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Lásd alább. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Bizonyítsuk be: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
Bizonyíték az alábbiakban a pythagorai elmélet konjugátumai és trigonometrikus változata alapján. 1. rész sqrt ((1-cosx) / (1 + cosx)) szín (fehér) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) szín (fehér) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) szín (fehér) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) 2. rész Hasonlóképpen sqrt ((1 + cosx) / (1-cosx) szín (fehér) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) 3. rész: Az sqrt ( (1-cosx) / (1 + cosx)) + sqrt (
Hogyan bizonyíthatja (cosx / (1 + sinx)) + ((1 + sinx) / cosx) = 2secx?
Konvertálja a bal oldali kifejezéseket közös nevezővel és add hozzá (a cos ^ 2 + sin ^ 2- 1-et az út mentén konvertálva); egyszerűsítse és hivatkozzon a sec = 1 / cos (cos (x) / (1 + sin (x))) + ((1 + sin (x)) / cos (x)) = (cos ^ 2 (x)) definíciójára + 1 + 2sin (x) + sin ^ 2 (x)) / (cos (x) (1 + sin (x) = (2 + 2sin (x)) / (cos (x) (1 + sin (x) ) = 2 / cos (x) = 2 * 1 / cos (x) = 2 másodperc (x)