Válasz:
Magyarázat:
Tegyük fel, hogy a közös arány (cr) a GP kérdéses jelentése
kifejezés az a utolsó kifejezés.
Tekintettel arra, hogy a első időszak a GP jelentése
Adott,
Azt is tudjuk, hogy a utolsó kifejezés jelentése
Most,
A 4 egész szám első három kifejezése a számtani P. és az utolsó három kifejezés a Geometric.P.-ben található. Hogyan találjuk meg ezeket a 4 számot? (1. + utolsó kifejezés = 37) és (a két egész szám összege közepén van) 36)
"A Reqd. Integers", 12, 16, 20, 25. T_1, t_2, t_3 és t_4 kifejezéseket hívjuk, ahol t_i ZZ-ben, i = 1-4. Tekintettel arra, hogy a t_2, t_3, t_4 kifejezések GP-t alkotnak, t_2 = a / r, t_3 = a, és t_4 = ar, ahol, ane0 .. Tekintettel arra is, hogy t_1, t_2 és t_3 AP-ben 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Így összesen, van, a Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, és t_4 = ar. A megadott értékek szerint t_2 + t_3 = 36rArra / r + a = 36, azaz a (1 + r) = 36r ....................... .................................... (ast_1). Tovább
Az AP negyedik ciklusa megegyezik a hetedik ciklus háromszorosának kétszeresével. 1. Keresse meg az első kifejezést és a közös különbséget?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d helyettesítő értékek az (1) egyenletben, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) A (2) egyenletben lévő értékek helyettesítése: a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) A (3) és (4) egyenletek egyidejű megoldása során d = 2/13 a = -15/13
A geometriai szekvencia négy egymást követő ciklusának összege 30. Ha az első és az utolsó ciklus AM-je 9. Keresse meg a közös arányt.
Legyen a GP első és közös aránya a és r. 1. feltétel szerint a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Második feltétel esetén a + ar ^ 3 = 2 * 9 .... (2) Kivonás (2) (1) ar + ar ^ 2 = 12 .... (3) (2) osztása (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Tehát r = 2 vagy 1/2