Bizonyítani
enged
Most
Előadás
Néha a trig kevésbé foglalkozik matematikával és többet a matematika felismerésével, amikor látjuk. Itt felismerjük
factoid:
Feltételezzük
Elég háttér. Miután felismertük a hármas szög képletet, a bizonyítás egyszerű.
Bizonyíték:
enged
Mutassa meg, hogy a cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Kicsit zavarodott vagyok, ha Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10) esetén negatív lesz, mint cos (180 ° -theta) = - costheta in a második negyed. Hogyan tudok bizonyítani a kérdést?
Lásd alább. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
A természetes számot csak 0, 3, 7 írja. Bizonyítsuk be, hogy egy tökéletes négyzet nem létezik. Hogyan bizonyíthatom ezt az állítást?
A válasz: Minden tökéletes négyzet vége 1, 4, 5, 6, 9, 00 (vagy 0000, 000000 stb.) Egy szám, amely 2-es, színes (piros) 3, színes (piros) 7, 8 és csak szín (piros) 0 nem tökéletes négyzet. Ha a természetes szám ezekből a három számból áll (0, 3, 7), elkerülhetetlen, hogy a számnak az egyikben kell véget érnie. Olyan volt, mintha ez a természetes szám nem lehet tökéletes tér.
Bizonyítsuk be, hogy 32sin ^ 4x.cos ^ 2x = cos6x-2cos4x-cos 2x + 2?
RHS = cos6x-2cos4x-cos2x + 2 = cos6x-cos2x + 2 (1-cos4x) = -2sin ((6x + 2x) / 2) * sin ((6x-2x) / 2) + 2 * 2sin ^ 2 ( 2x) = 4sin ^ 2 (2x) -2sin4x * sin2x = 4sin ^ 2 (2x) -2 * 2 * sin2x * cos2x * sin2x = 4sin ^ 2 (2x) -4sin ^ 2 (2x) * cos2x = 4sin ^ 2 (2x) [1-cos2x] = 4 * (2sinx * cosx) ^ 2 * 2sin ^ 2x = 4 * 4sin ^ 2x * cos ^ 2x * 2sin ^ 2x = 32sin ^ 4x * cos ^ 2x = LHS