Válasz:
Magyarázat:
Oké. Megvan:
Hagyjuk figyelmen kívül
A pythagorai identitás szerint
Most, hogy tudjuk, írhatunk:
Fokokban
Válasz:
Magyarázat:
Adott,
Egyszerűsítsük (1 cos theta + sin theta) / (1+ cos theta + sin theta)?
= sin (teta) / (1 + cos (teta)) (1-cos (theta) + sin (theta)) / (1 + cos (theta) + sin (teta)) = (1-cos (teta) + sin (theta)) * (1 + cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) ^ 2 = ((1 + sin (theta)) ^ 2-cos ^ 2 (theta)) / (1 + cos ^ 2 (theta) + sin ^ 2 (theta) +2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) ((1+ sin (theta)) 2-cos ^ 2 (theta)) / (2 + 2 sin (theta) +2 cos (teta) + 2 sin (theta) cos (theta)) ((1 + sin (theta) ) ^ 2-cos ^ 2 (teta)) / (2 (1 + cos (teta)) + 2 sin (theta) (1 + cos (theta)) = (1/2) ((1 + sin (theta) ) ^ 2-cos ^ 2 (theta)) / ((1 + cos (teta)) (1 + sin (theta)) = (1/2
Bizonyítás: - sin (7 theta) + sin (5 theta) / sin (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Mutassuk meg, hogy (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Lásd alább. Legyen 1 + costheta + isintheta = r (cosalpha + isinalpha), itt r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (teta / 2) és tanalpha = sintheta / (1 + costeta) == (2sin (teta / 2) cos (teta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) vagy alfa = theta / 2, majd 1 + costeta-izintheta = r (cos (alfa) + izin (-alfa)) = r (cosalpha-izinalpha) és írhatunk (1 + costeta + izintheta) ^ n + (1 + costeta-izintheta) ^ n DE MOivre tétele alapján r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha =