Válasz:
Magyarázat:
Mi a 14/126 egyszerűsítése, ha egyszerűsíthető?
Igen .. egyszerűsíthető Mind a számláló, mind a nevező megosztható 2-vel ... ha úgy gondolja, hogy 14 nagy szám lenne .... gondolj 126 + 14 = 140 140/14 = 10 ezért126 / 14 = 1/9 Megkapja ... 1/9
Mi a 15 hüvelyk körüli kerülete, ha egy kör átmérője közvetlenül arányos a sugárával, és a 2 hüvelykes átmérőjű kör körülbelül 6,28 hüvelyk körüli kerülete?
Úgy vélem, a kérdés első részének azt kellett volna mondania, hogy egy kör kerülete közvetlenül arányos az átmérőjével. Ez a kapcsolat az, hogyan kapunk pi-t. Ismerjük a kisebb kör átmérőjét és kerületét, a "2 in" és a "6.28 in". Annak érdekében, hogy meghatározzuk a kerület és az átmérő közötti arányt, a kerületet az átmérővel osztjuk, "6.28" a "/ 2" -ban "=" 3.14 ", ami nagyon hasonlít
Mutassuk meg, hogy (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Lásd alább. Legyen 1 + costheta + isintheta = r (cosalpha + isinalpha), itt r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (teta / 2) és tanalpha = sintheta / (1 + costeta) == (2sin (teta / 2) cos (teta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) vagy alfa = theta / 2, majd 1 + costeta-izintheta = r (cos (alfa) + izin (-alfa)) = r (cosalpha-izinalpha) és írhatunk (1 + costeta + izintheta) ^ n + (1 + costeta-izintheta) ^ n DE MOivre tétele alapján r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha =