Válasz:
Magyarázat:
Lejtő
Tehát, ha a lejtőn a reqd. vonal
Most használjuk a Slope-Point képlet a reqd. vonal, ismert
átmegy a ponton
Így az eqn. a reqd. vonal,
Mekkora az egyenlet a (0, -1) -en áthaladó és a következő pontokon áthaladó vonalra merőleges vonal: (8, -3), (1,0)?
7x-3y + 1 = 0 A két pontot (x_1, y_1) és (x_2, y_2) összekötő vonal lejtése (y_2-y_1) / (x_2-x_1) vagy (y_1-y_2) / (x_1-x_2 ) Mivel a pontok (8, -3) és (1, 0), a vonalat összekötő vonal lejtőjét a (0 - (- 3)) / (1-8) vagy (3) / (- 7) adja meg. azaz -3/7. Két merőleges vonal meredeksége mindig -1. Ezért az erre merőleges vonal meredeksége 7/3, és így a lejtőforma egyenlete y = 7 / 3x + c lehet, mivel ez áthalad a (0, -1) ponton, és ezeket az értékeket a fenti egyenletbe helyezzük. -1 = 7/3 * 0 + c vagy c = 1 Ezért a k
Mekkora az egyenlet a (-2,1) -en áthaladó és a következő pontokon áthaladó vonalra merőleges vonal: (5,2), (- 12,5)?
17x-3y + 37 = 0 A (x_1, y_1) és (x_1, y_1) vonalak összekapcsolási pontjait a (y_2-y_1) / (x_2-x_1) ^ adja meg. Ezért az (5,2) és (-12,5) közötti összekötő vonal lejtése (5-2) / (- 12-5) = - 3/17 A vonal (5,2) és a (5,2) közötti merőleges vonal meredeksége. ( 12,5) -1 / (- 3/17) vagy 17/3 lesz, az egymásra merőleges vonalak lejtéseinek értéke -1. Ennélfogva a (-2,1) és 17/3 lejtőn áthaladó vonal egyenlete (pont-lejtés formában) (y-1) = 17/3 (x - (- 2)) vagy 3 (y-1) ) = 17 (x + 2)) vagy 17x-3y + 37 = 0
Mi az egyenlet az (5,7) -en áthaladó és az alábbi pontokon áthaladó vonalra merőleges vonal: (1,3), (- 2,8)?
(y - szín (piros) (7)) = szín (kék) (3/5) (x - szín (piros) (5)) Vagy y = 3 / 5x + 4 Először is találjuk a merőleges meredekséget vonal. A meredekség a következő képlettel érhető el: m = (szín (piros) (y_2) - szín (kék) (y_1)) / (szín (piros) (x_2) - szín (kék) (x_1)) ahol m van a lejtő és a (szín (kék) (x_1, y_1)) és (szín (piros) (x_2, y_2)) a vonal két pontja. A két pont helyettesítése a problémáról: m = (szín (piros) (8) - szín (kék) (3)) / (szín (piros) (-