Válasz:
Lejtő:
Magyarázat:
A lejtés adott pontjainak képlete
Mivel a növekedés változik
A pontjaidhoz egyszerűen csatlakoztatnád a képletet.
=
=
Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Egy vonal áthalad (8, 1) és (6, 4). Egy második vonal áthalad (3, 5). Mi a másik pont, hogy a második vonal áthaladhat, ha párhuzamos az első vonallal?
(1,7) Tehát először meg kell találnunk az irányvektorot (8,1) és (6,4) (6,4) - (8,1) = (- 2,3) között. Tudjuk, hogy egy vektoregyenlet egy pozícióvektorból és egy irányvektorból áll. Tudjuk, hogy a (3,5) pozíció a vektor egyenleten van, így ezt használhatjuk pozícióvektorunkként, és tudjuk, hogy párhuzamos a másik vonallal, így ezt az irányvektorot (x, y) = (3, 4) + s (-2,3) Egy másik pont megtalálása a vonalon csak a 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Tehát (1,7) egy má
Az A pont (-2, -8), a B pont pedig (-5, 3). Az A pontot (3pi) / 2 forgatjuk az óramutató járásával megegyező irányban az eredet körül. Melyek az A pont új koordinátái és milyen mértékben változott az A és B pont közötti távolság?
Legyen A, (r, theta) kezdeti poláris koordinátája Az A kezdeti derékszögű koordinátája (x_1 = -2, y_1 = -8) Így 3pi / után írhatunk (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta). 2 az óramutató járásával megegyező irányban az A új koordinátája x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + teta ) = - rsin (3pi / 2-theta) = rcostheta = -2 A kezdeti távolsága B-től (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 végső távolság az A új pozíci