Válasz:
Magyarázat:
Itt a külső funkciók másodperc, a sec (x) származéka sec (x) tan (x).
#f '(x) = sec (e ^ x-3x) tan (e ^ x-3x) származéka (e ^ x-3x)
A +, -,:, * használatával (az összes jelet kell használnia, és az egyiket használhatja kétszer, és nem engedélyezheti a zárójelek használatát), tegye a következő mondatot: 9 2 11 13 6 3 = 45?
9-2 * 11 + 13: 6 * 3 = 45 9-2 * 11 + 13: 6 * 3 = 45 Ez megfelel a kihívásnak?
Hogyan különbözteti meg az f (x) = sqrt (e ^ cot (x)) használatát a láncszabály használatával?
F '(x) == - (sqrt (e ^ cot (x)). csc ^ 2 (x)) / 2 f (x) = sqrt (e ^ cot (x)) Az f (x ), láncszabályt kell használnunk. szín (piros) "láncszabály: f (g (x)) '= f' (g (x)). g '(x)" Legyen u (x) = cot (x) => u' (x) = -csc ^ 2 (x) és g (x) = e ^ (x) => g '(x) = e ^ (x) .g' (u (x)) = e ^ cot (x) f (x ) = sqrt (x) => f '(x) = 1 / (2sqrt (x)) => f' (g (u (x))) = 1 / (2sqrt (e ^ cot (x)) d / dx (f (g (u (x))) = f '(g (u (x))) g' (u (x)). u '(x) = 1 / (sqrt (e ^ cot (x ))) e ^ kiságy (x) .- cos ^ 2 (x) = (- e ^ kiságy
Hogyan különbözteti meg az arcsin-t (csc (4x)) a láncszabály használatával?
D / dx (sin ^ -1 csc (4x)) = 4 * sec 4x * sqrt (1-csc ^ 2 4x) A d / dx (sin ^ -1 u) = (1 / sqrt (1 u ^ 2)) du d / dx (sin ^ -1 csc (4x)) = (1 / sqrt (1- (csc 4x) ^ 2)) d / dx (csc 4x) d / dx (sin ^ -1 csc (4x)) = (1 / sqrt (1-csc ^ 2 4x)) * (- csc 4x * cot 4x) * d / dx (4x) d / dx (sin ^ -1 csc (4x)) = ( (-csc 4x * cot 4x) / sqrt (1-csc ^ 2 4x)) * (4) d / dx (sin ^ -1 csc (4x)) = ((- 4 * csc 4x * cot 4x) / sqrt (1-csc ^ 2 4x)) * (sqrt (1-csc ^ 2 4x) / (sqrt (1-csc ^ 2 4x))) d / dx (sin ^ -1 csc (4x)) = (( 4 * csc 4x * kiságy 4x * sqrt (1-csc ^ 2 4x)) / (- cot ^ 2 4x)) d / dx (sin ^ -1 csc (4x)) = 4 * sec 4x * sqrt (1-