Mekkora az egyenlet a (0, -1) -en áthaladó és a következő pontokon áthaladó vonalra merőleges vonal: (8, -3), (1,0)?
7x-3y + 1 = 0 A két pontot (x_1, y_1) és (x_2, y_2) összekötő vonal lejtése (y_2-y_1) / (x_2-x_1) vagy (y_1-y_2) / (x_1-x_2 ) Mivel a pontok (8, -3) és (1, 0), a vonalat összekötő vonal lejtőjét a (0 - (- 3)) / (1-8) vagy (3) / (- 7) adja meg. azaz -3/7. Két merőleges vonal meredeksége mindig -1. Ezért az erre merőleges vonal meredeksége 7/3, és így a lejtőforma egyenlete y = 7 / 3x + c lehet, mivel ez áthalad a (0, -1) ponton, és ezeket az értékeket a fenti egyenletbe helyezzük. -1 = 7/3 * 0 + c vagy c = 1 Ezért a k
Mekkora az egyenlet a (-1,1) -en áthaladó és a következő pontokon áthaladó vonalra merőlegesen: (13, -1), (8,4)?
Lásd az alábbi megoldási folyamatot: Először meg kell találnunk a probléma két pontjára vonatkozó lejtést. A meredekség a következő képlettel érhető el: m = (szín (piros) (y_2) - szín (kék) (y_1)) / (szín (piros) (x_2) - szín (kék) (x_1)) ahol m van a lejtő és a (szín (kék) (x_1, y_1)) és (szín (piros) (x_2, y_2)) a vonal két pontja. Az értékek helyettesítése a probléma pontjairól: m = (szín (piros) (4) - szín (kék) (- 1)) / (szín (piros) (8) - s
Mekkora az egyenlet az (-1,1) -en áthaladó és az alábbi pontokon áthaladó vonalra merőleges vonal: (13,1), (- 2,3)?
15x-2y + 17 = 0. A P (13,1) & Q (-2,3) pontokon áthaladó vonal m 'értéke m' = (1-3) / (13 - (- 2)) = - 2/15. Tehát, ha a lejtőn a reqd. a vonal m, mint a reqd. A vonal a PQ vonalhoz tartozó bot, mm '= - 1 rArr m = 15/2. Most használjuk a Slope-Point Formulát a reqd számára. vonal, amelyről ismert, hogy áthalad a ponton (-1,1). Így az eqn. a reqd. vonal, y-1 = 15/2 (x - (- 1)), vagy 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.