Mi az ((2x ^ 0 * 2x ^ 3) / (xy ^ -4)) ^ - 3?

Mi az ((2x ^ 0 * 2x ^ 3) / (xy ^ -4)) ^ - 3?
Anonim

Válasz:

# = 1 / (4x ^ 2y ^ 4) ^ 3 #

Magyarázat:

# ((2x ^ 0. 2x ^ 3) / (xy ^ -4)) ^ - 3 #

Mivel # X ^ 0 = 1 # kapunk

# ((2 (1). 2x ^ 3) / (xy ^ -4)) ^ - 3 #

# = ((4x ^ 3) / (xy ^ -4)) ^ - 3 #

# = ((4x ^ 2) / (y ^ -4)) ^ - 3 #

# = ((4x ^ 2) (y ^ 4)) ^ - 3 #

# = (4x ^ 2y ^ 4) ^ - 3 #

# = 1 / (4x ^ 2y ^ 4) ^ 3 #

Válasz:

# 1 / (64x ^ 6Y ^ 12) #

Magyarázat:

Számos törvény létezik itt.

Egyetlen törvény sem fontosabb, mint egy másik. A kifejezés egyszerűsítésének különböző módjai vannak.

# ((2x ^ 0xx 2x ^ 3) / (xy ^ -4)) ^ - 3 "Keresse meg először a nyilvánvaló törvényeket" #

=# ((2 szín (piros) (x ^ 0) xx 2color (kék) (x ^ 3)) / (szín (kék) (x) y ^ -4)) ^ - 3 "" szín (piros) (x ^ 0 = 1), szín (kék) (x ^ 3 / x = x ^ 2) #

=# ((2xxcolor (piros) (1) xx2color (kék) (x ^ 2)) / y ^ -4) ^ (- 3) #

=# (szín (zöld) (2xx2x ^ 2) / szín (narancs) (y ^ -4)) ^ szín (bíbor) (- 3) "" (a / b) ^ - m = (b / a) ^ (+ m) #

=# (Szín (narancssárga) (y ^ -4) / (zöld) (2xx2x ^ 2)) ^ színes (magenta) 3 #

=# (1 / (2xx2x ^ 2color (orange) (y ^ 4))) ^ 3 "" (narancssárga) (x ^ -1 = 1 / x) #

=# (1 / (4x ^ 2y ^ 4)) ^ színű (piros) 3 #

=#COLOR (piros) (1 / (64x ^ 6Y ^ 12)) #