Használja az arány-tesztet a következő sorozat konvergenciájának megtalálásához?

Használja az arány-tesztet a következő sorozat konvergenciájának megtalálásához?
Anonim

Válasz:

A sorozat eltér, mivel ennek az aránynak a korlátja> 1

#lim_ (N-> oo) a_ (n + 1) / a_n = lim_ (N-> oo) (4 (n + 1/2)) / (3 (n + 1)) = 4/3> 1 #

Magyarázat:

enged # # A_n legyen a sorozat n.

#a_n = ((2n)!) / (3 ^ n (n!) ^ 2) #

Azután

#a_ (n + 1) = ((2 (n + 1))!) / (3 ^ (n + 1) ((n + 1)!) ^ 2) #

# = ((2n + 2)!) / (3 * 3 ^ n ((n + 1)!) ^ 2) #

# = ((2n)! (2n + 1) (2n + 2)) / (3 * 3 ^ n (n!) ^ 2 (n + 1) ^ 2) #

# = ((2n)!) / (3 ^ n (n!) ^ 2) * ((2n + 1) (2n + 2)) / (3 (n + 1) ^ 2) #

# = A_n * ((2n + 1) 2 (n + 1)) / (3 (n + 1) ^ 2) #

#a_ (n + 1) = a_n * (2 (2n + 1)) / (3 (n + 1)) #

#a_ (n + 1) / a_n = (4 (n + 1/2)) / (3 (n + 1)) #

Ennek az aránynak a korlátozása

#lim_ (N-> oo) a_ (n + 1) / a_n = lim_ (N-> oo) (4 (n + 1/2)) / (3 (n + 1)) = 4/3> 1 #

A sorozat tehát eltérő.