Válasz:
y = mx + b Számítsuk ki a meredekséget, m az adott pontértékek közül, oldjuk meg a b pontot az egyik pontérték használatával, és ellenőrizzük a megoldást a többi pontértékkel.
Magyarázat:
Egy vonalat a vízszintes (x) és a függőleges (y) pozíciók közötti változás arányának tekinthetjük. Tehát bármely olyan pont esetében, amelyet a derékszögű (síkbeli) koordináták, mint amilyenek ebben a problémában vannak megadva, egyszerűen beállítod a két változást (különbséget), majd az arányt a meredekség eléréséhez, m.
„Y” függőleges különbség = y2 - y1 = 2 - 6 = -4
Vízszintes különbség „x” = x2 - x1 = 5 - -9 = 14
Ratio = „emelkedés futás közben”, vagy függőleges vízszintes = -4/14 = -2/7 a meredekségnél, m.
Egy vonal általános formája az y = mx + b, vagy a függőleges helyzet a meredekség és a vízszintes helyzet eredménye, x, valamint az a pont, ahol a vonal keresztezi (elfogja) az x tengelyt (a vonal, ahol z mindig nulla)) Tehát, miután kiszámította a lejtőt, a két pont ismertethető az egyenletben, így csak a b 'elfogás' ismeretlen.
6 = (-2/7) (- 9) + b; 6 = 18/7 + b; 42/7 - 18/7 = b; 24/7 = b
A végső egyenlet tehát y = - (2/7) x + 24/7
Ezután ellenőrizzük ezt a másik ismert pont helyettesítésével:
2 = (-2/7) (5) + 24/7; 2 = -10/7 + 24/7; 2 = 14/7; 2 = 2 JÓ!
Egy vonal egyenlete 2x + 3y - 7 = 0, talál: - (1) a vonal (2) lejtése, az adott vonalra merőleges vonal egyenlete, és az x-y + 2 = vonal metszéspontján áthaladva. 0 és 3x + y-10 = 0?
-3x + 2y-2 = 0 szín (fehér) ("ddd") -> szín (fehér) ("ddd") y = 3 / 2x + 1 Első rész sok részletben, amely bemutatja az első elvek működését. Ha egyszer használják ezeket, és a parancsikonokat használják, akkor sokkal kevesebb sort használunk. szín (kék) ("Határozza meg a kezdeti egyenletek elkapását") x-y + 2 = 0 "" ....... egyenlet (1) 3x + y-10 = 0 "" .... egyenlet ( 2) Kivonja az x-t az Eqn (1) mindkét oldaláról, megadva a -y + 2 = -x-t Mindkét olda
Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Bizonyítsuk be, hogy az Euklideszi jobb oldali görbe 1. és 2. tétel: ET_1 => vonal {BC} ^ {2} = vonal {AC} * vonal {CH}; ET'_1 => bar (AB) ^ {2} = bar (AC) * bar (AH); ET_2 => barAH ^ {2} = vonal {AH} * vonal {CH}? ! [írja be a képforrást itt] (https
Lásd az Igazolás című részt a Magyarázat részben. Figyeljük meg, hogy a Delta ABC és a Delta BHC-ben van, / _B = / _ BHC = 90 ^ @, "közös" / _C = "közös" / _BCH, és:., / _A = / _ HBC rArr Delta ABC "hasonló a" Delta BHC-hez "Ennek megfelelően a megfelelő oldalaik arányosak. :. (AC) / (BC) = (AB) / (BH) = (BC) / (CH), azaz (AC) / (BC) = (BC) / (CH) rArr BC ^ 2 = AC * CH Ez bizonyítja, hogy ET_1. Az ET'_1 bizonyítéka hasonló. Az ET_2 bizonyításához megmutatjuk, hogy a Delta AHB