Válasz:
4 centiméter.
Magyarázat:
A paralelogramma területe
Válasz:
Magyarázat:
A paralelogramma területe a következő képletekkel számítható:
hol
Ezért az adott információ felhasználásával
Válasz:
Magyarázat:
A területet mindig négyzetes egységek adják meg soha egyetlen egységgel!
A párhuzamosság területét az egyenlet adja meg:
# B # a paralelogramma alaphossza
# H # a párhuzamosság magassága
És így, az adott értékek csatlakoztatása:
A háromszög magassága 1,5 cm / perc sebességgel növekszik, míg a háromszög területe 5 négyzetméter / perc sebességgel növekszik. Milyen sebességgel változik a háromszög alapja, amikor a magasság 9 cm, és a terület 81 négyzetméter?
Ez egy összefüggő (változás) típusú probléma. Az érdeklődő változók: a = magasság A = terület, és mivel egy háromszög területe A = 1 / 2ba, b = bázisra van szükségünk. A megadott változások percenkénti egységben vannak, így a (láthatatlan) független változó t = idő percben. Adunk: (da) / dt = 3/2 cm / perc (dA) / dt = 5 cm "" ^ 2 / min És megkérdezzük, hogy (db) / dt, ha a = 9 cm és A = 81cm "" ^ 2 A = 1 / 2ba, megkülönböztetv
Egy adott terület háromszögének alapja fordítottan változik, mint a magasság. A háromszög alapja 18 cm, magassága 10 cm. Hogyan találja meg az egyenlő terület háromszögének magasságát és a 15 cm-es bázist?
Magasság = 12 cm A háromszög területe meghatározható az egyenlet = 1/2 * bázis * magassággal Az első háromszög területét a háromszög méréseinek az egyenletbe helyezésével határozhatja meg. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Hagyja, hogy a második háromszög magassága = x. Tehát a második háromszög területegyenlete = 1/2 * 15 * x Mivel a területek egyenlőek, 90 = 1/2 * 15 * x Times mindkét oldala 2. 180 = 15x x = 12
Mi a szélesség (ft / sec) változásának sebessége, ha a magasság 10 láb, ha a magasság abban a pillanatban 1 ft / sec sebességgel csökken. A téglalapnak változó magassága és változó szélessége is van , de a magasság és a szélesség úgy változik, hogy a téglalap területe mindig 60 négyzetméter?
A szélesség változási sebessége az idővel (dW) / (dt) = 0,6 "ft / s" (dW) / (dt) = (dW) / (dh) xx (dh) / dt (dh) / (dt) ) = - 1 "ft / s" Szóval (dW) / (dt) = (dW) / (dh) xx-1 = - (dW) / (dh) Wxxh = 60 W = 60 / h (dW) / ( dh) = - (60) / (h ^ 2) Tehát (dW) / (dt) = - (- (60) / (h ^ 2)) = (60) / (h ^ 2) Tehát amikor h = 10 : rArr (dW) / (dt) = (60) / (10 ^ 2) = 0,6 "ft / s"