Válasz:
Amint egy számításba bármilyen irracionális számot ad meg, az érték irracionális.
Magyarázat:
Amint egy számításba bármilyen irracionális számot ad meg, az érték irracionális.
Fontolgat
Ebből adódóan
stb. is irracionálisak.
A vízszintes vonal lejtése nulla, de miért nem definiált egy függőleges vonal lejtése (nem nulla)?
Olyan, mint a különbség a 0/1 és 1/0 között. 0/1 = 0, de 1/0 nincs meghatározva. A két ponton (x_1, y_1) és (x_2, y_2) áthaladó vonal lejtőjét m adja meg: m = (Delta y) / (Delta x) = (y_2 - y_1) / (x_2 - x_1) Ha y_1 = y_2 és x_1! = X_2, akkor a vonal vízszintes: Delta y = 0, Delta x! = 0 és m = 0 / (x_2 - x_1) = 0 Ha x_1 = x_2 és y_1! = Y_2, akkor a sor függőleges: Delta y! = 0, Delta x = 0 és m = (y_2 - y_1) / 0 nincs meghatározva.
Ms. Fox megkérdezte, hogy az osztálya 4,2 és négyzetgyök összege 2 racionális vagy irracionális? Patrick azt válaszolta, hogy az összeg irracionális. Adja meg, hogy Patrick helyes vagy helytelen. Indokolja érvelését.
Az összeg 4.2 + sqrt2 irracionális; örökli az sqrt 2 soha nem ismétlődő tizedesbővítési tulajdonságát. Az irracionális szám olyan szám, amelyet nem lehet két egész szám arányaként kifejezni. Ha egy szám irracionális, akkor a tizedes kiterjesztése örökre folytatódik mintázat nélkül, és fordítva. Már tudjuk, hogy az sqrt 2 irracionális. A decimális kiterjesztése kezdődik: sqrt 2 = 1.414213562373095 ... A 4.2-es szám racionális; ez 42/10. Amikor az sqrt 2 tiz
A következő állítások közül melyik igaz / hamis? (i) Az R²-nek végtelenül sok nem nulla, megfelelő vektor alterülete van. (ii) Minden homogén lineáris egyenletrendszer nem nulla megoldással rendelkezik.
"(i) Igaz." "(ii) Hamis." "(i) Olyan alterületeket állíthatunk elő, amelyek:" "1)" r "-nél RR-ben," hadd: "quad V_r = (x, r x) az RR ^ 2-ben. "[Geometriai értelemben," V_r "a" r ^ 2, "lejtés" r "eredetén áthaladó vonal." 2) Ellenőrizzük, hogy ezek az alterületek igazolják-e az (i) állítást. " "3) Nyilvánvalóan:" jelentkezzen be a négyzetre "qquad qquad qquad quad V_r sube RR ^ 2. "4) Ellenőrizze, hogy:" A quad q