Válasz:
Lásd az alábbi megoldási folyamatot:
Magyarázat:
A vonalszakasz középpontjának megtalálására szolgáló képlet adja meg a két végpontot:
Hol
Az értékek helyettesítése a probléma pontjaiból és a számításból:
Mi a középpontja egy olyan szegmensnek, amelynek végpontjai (-12, 8) és a származás?
Lásd az alábbi megoldási folyamatot: Az eredet (0, 0) A vonalszakasz középpontjának megtalálására szolgáló képlet adja meg a két végpontot: M = ((szín (piros) (x_1) + szín (kék) ( x_2)) / 2, (szín (piros) (y_1) + szín (kék) (y_2)) / 2) ahol M a középpont és az adott pontok: (szín (piros) (x_1), szín (piros) (y_1)) és (szín (kék) (x_2), szín (kék) (y_2)) Az értékek helyettesítése a probléma pontjaiból ad: M = ((szín (piros) (- 12) + szín
B körbe kerül, amelynek középpontja (4, 3) és egy pont a (10, 3) és egy másik C körön, amelynek középpontja (-3, -5) és egy pont a körben (1, -5) . Mi a B kör aránya a C körhöz?
3: 2 "vagy" 3/2 "szükséges a körök sugarainak kiszámításához, és" "a sugár a középponttól a" "körhöz való távolság" "a B" középpontja = (4,3 ) "és a pont" = (10,3) ", mivel az y-koordináták mindkettő 3, akkor a sugár a" "rArr" B "= 10-4 = 6" középpont x-koordinátáinak különbsége. C = = (- 3, -5) "és a pont" = (1, -5) "y-koordináták mindkettő - 5" r
Az A kör 2-es sugarú és a (6, 5) középpontja. A B körnek 3 és egy (2, 4) középpontja van. Ha a B kört <1, 1> fordítja le, átfedi az A kör? Ha nem, mi a legkisebb távolság a két kör közötti pontok között?
"körök átfedése"> ", amit itt kell tennünk, összehasonlítani a távolságokat (d)" "a központok között a" "" sugarak összegével, ha a "> d" sugarak összege, majd a körök átfedik a "•" -t. "d" dőlésszög, majd "d" kiszámítása előtt nem fedik át az átfedést, ezért meg kell találnunk a "B" új "" centrumát a "" <1,1> (2,4) - (2 + 1, 4 + 1) - (3,5) larrcolor (piro