Válasz:
Bármilyen irracionális szám, pl.
Magyarázat:
egyenértékűen
Ennek bizonyításához a következőképpen járhatunk el:
Először is tegyük fel
Aztán vannak egész számok
# x + 1/4 = p / q #
kivonva
#x = p / q - 1/4 = (4p-q) / (4q) #
ami racionális.
Ezzel szemben, ha
# x + 1/4 = m / n + 1/4 = (4m + n) / (4n) #
ez is racionális.
Legyen a nem nulla racionális szám, és b legyen irracionális szám. A - b racionális vagy irracionális?
Amint egy számításba bármilyen irracionális számot ad meg, az érték irracionális. Amint egy számításba bármilyen irracionális számot ad meg, az érték irracionális. Fontolja meg a pi. pi irracionális. Ezért 2pi, "" 6+ pi "" 12-pi "," pi / 4 "," pi ^ 2 "sqrtpi stb. Irracionális is.
Ms. Fox megkérdezte, hogy az osztálya 4,2 és négyzetgyök összege 2 racionális vagy irracionális? Patrick azt válaszolta, hogy az összeg irracionális. Adja meg, hogy Patrick helyes vagy helytelen. Indokolja érvelését.
Az összeg 4.2 + sqrt2 irracionális; örökli az sqrt 2 soha nem ismétlődő tizedesbővítési tulajdonságát. Az irracionális szám olyan szám, amelyet nem lehet két egész szám arányaként kifejezni. Ha egy szám irracionális, akkor a tizedes kiterjesztése örökre folytatódik mintázat nélkül, és fordítva. Már tudjuk, hogy az sqrt 2 irracionális. A decimális kiterjesztése kezdődik: sqrt 2 = 1.414213562373095 ... A 4.2-es szám racionális; ez 42/10. Amikor az sqrt 2 tiz
A 9-es nevezővel rendelkező racionális számot (-2/3) osztja meg. Az eredményt 4/5-rel szorozzuk, majd hozzáadjuk a -5/6 értéket. A végső érték 1/10. Mi az eredeti racionális?
- frac (7) (9) A "racionális számok" a frac (x) (y) formájának töredékszáma, ahol mind a számláló, mind a nevező egész szám, azaz frac (x) (y); x, y ZZ-ben. Tudjuk, hogy néhány racionális szám, amelynek nevezője 9, osztva - frac (2) (3).Tekintsük ezt a racionálisnak, hogy frac (a) (9): "" "" "" "" "" "" "" "" "" "" frac (a) (9) div - frac (2) (3) " "" "" "" "" "" "&qu