Válasz:
Két csúcs van
Magyarázat:
Először keressük meg az alap középpontját. Alapként be van kapcsolva
A metszéspontja
vagy
vagy
Ennélfogva,
Most egy olyan vonal egyenlete, amelynek lejtése egy
A metszéspontja
Tudjuk, hogy a bázis egyik csúcsa
Ennélfogva
Ezért két csúcs van
Egy adott terület háromszögének alapja fordítottan változik, mint a magasság. A háromszög alapja 18 cm, magassága 10 cm. Hogyan találja meg az egyenlő terület háromszögének magasságát és a 15 cm-es bázist?
Magasság = 12 cm A háromszög területe meghatározható az egyenlet = 1/2 * bázis * magassággal Az első háromszög területét a háromszög méréseinek az egyenletbe helyezésével határozhatja meg. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Hagyja, hogy a második háromszög magassága = x. Tehát a második háromszög területegyenlete = 1/2 * 15 * x Mivel a területek egyenlőek, 90 = 1/2 * 15 * x Times mindkét oldala 2. 180 = 15x x = 12
A háromszög kerülete 24 hüvelyk. A 4 hüvelyk leghosszabb oldala hosszabb, mint a legrövidebb oldal, a legrövidebb oldala pedig a középső oldal hossza háromnegyede. Hogyan találja meg a háromszög mindkét oldalának hosszát?
Hát ez a probléma egyszerűen lehetetlen. Ha a leghosszabb oldal 4 hüvelyk, a háromszög kerülete nem lehet 24 hüvelyk. Azt mondod, hogy 4 + (valami kevesebb, mint 4) + (valamivel kevesebb, mint 4) = 24, ami lehetetlen.
A háromszög kerülete 29 mm. Az első oldal hossza kétszerese a második oldal hosszának. A harmadik oldal hossza 5-nél nagyobb, mint a második oldal hossza. Hogyan találja meg a háromszög oldalhosszát?
S_1 = 12 s_2 = 6 s_3 = 11 A háromszög kerülete az összes oldalának hossza. Ebben az esetben a kerülete 29 mm. Tehát ebben az esetben: s_1 + s_2 + s_3 = 29 Tehát az oldalak hosszának megoldása esetén az állításokat az adott egyenletformába fordítjuk. "Az 1. oldal hossza kétszerese a 2. oldal hosszúságának" Ennek megoldásához véletlen változót rendelünk s_1 vagy s_2 értékhez. Ebben a példában az x-et hagynám a 2. oldal hosszának, hogy elkerüljem az egye