Válasz:
Magyarázat:
A két merőleges vonal lejtőinek terméke
Ezért a pont lejtőforma egyenletét használjuk
Most szorozzuk meg mindkét oldalt
Mi az a egyenlet, amely egy ponton (0, 2) halad át, és merőleges a 3-as meredekségű vonalra?
Y = -1/3 x + 2> 2 merőleges vonal esetén m_1 "és" m_2, majd m_1. m_2 = -1 itt 3 xx m = - 1 rArr m = -1/3 vonal egyenlet, y - b = m (x - a) szükséges. m = -1/3 "és (a, b) = (0, 2)" így y - 2 = -1/3 (x - 0) rArr y = -1/3 x + 2
Mekkora az egyenlet a vonalon, amely áthalad a ponton (2, 5), és merőleges a 2-es lejtésű vonalra?
Y = 1 / 2x + 4 Figyeljük meg az y = mx + c szabványt, mint az ul ("egyenes vonal") egyenletét. Ennek a vonalnak a gradiense m Azt mondják, hogy m = -2 Egyenes vonal meredeksége ehhez -1 / m Az új vonalnak a -1 / m = (-1) xx1 / (- 2) = 1/2 '~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ Így a merőleges vonal egyenlete: y = 1 / 2x + c .................. .......... egyenlet (1) Azt mondják, hogy ez a vonal áthalad az (x, y) ponton (2,5). Ennek az (1) egyenletnek az helyettesítése 5 = 1/2 (2 ) + c "" -> "" 5 = 1 + c "" => "" c
Az XY szegmens egy olyan repülőgép útvonalát jelenti, amely áthalad a koordinátákon (2, 1) és (4 5). Mekkora egy olyan vonal lejtése, amely egy másik repülőgép útját képviseli, amely párhuzamosan halad az első repülőgéppel?
"lejtés" = 2 Számítsa ki az XY lejtését a szín (kék) "gradiens képlet" színével (narancssárga) "Emlékeztető" szín (piros) (bar (ul (| színes (fehér) (2/2) szín (fekete)) (m = (y_2-y_1) / (x_2-x_1)) szín (fehér) (2/2) |))) ahol m a lejtőt és a (x_1, y_1), (x_2, y_2) "2 koordinátapontot jelöli. " A 2 pont itt (2, 1) és (4, 5) legyen (x_1, y_1) = (2,1) "és" (x_2, y_2) = (4,5) rArrm = (5-1) / (4-2) = 4/2 = 2 A következő tényt ismerni kell a kérdé