Az aritmetikai sorozat 20. ciklusa log20 és a 32. kifejezés log32. Pontosan egy kifejezés a szekvenciában racionális szám. Mi az a racionális szám?
A tizedik kifejezés log10, ami 1-nek felel meg. Ha a 20. ciklus log 20, és a 32. kifejezés log32, akkor a tizedik kifejezés log10. Log10 = 1. Az 1. ábra racionális szám. Ha egy naplót "bázis" nélkül írunk (az alkönyvtár a napló után), akkor egy 10 bázist feltételezünk. Ezt "közös naplónak" nevezik. A 10-es napló 10-ből 1-es, mert az első teljesítményre 10-es. Hasznos dolog, hogy emlékezzünk arra, hogy "a naplóra adott válasz az exponens". A racion
A 4 egész szám első három kifejezése a számtani P. és az utolsó három kifejezés a Geometric.P.-ben található. Hogyan találjuk meg ezeket a 4 számot? (1. + utolsó kifejezés = 37) és (a két egész szám összege közepén van) 36)
"A Reqd. Integers", 12, 16, 20, 25. T_1, t_2, t_3 és t_4 kifejezéseket hívjuk, ahol t_i ZZ-ben, i = 1-4. Tekintettel arra, hogy a t_2, t_3, t_4 kifejezések GP-t alkotnak, t_2 = a / r, t_3 = a, és t_4 = ar, ahol, ane0 .. Tekintettel arra is, hogy t_1, t_2 és t_3 AP-ben 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Így összesen, van, a Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, és t_4 = ar. A megadott értékek szerint t_2 + t_3 = 36rArra / r + a = 36, azaz a (1 + r) = 36r ....................... .................................... (ast_1). Tovább
Mi a 4/3-as radikális 3/4 radikális a legegyszerűbb formában?
Sqrt3 / 6 sqrt (4/3) -sqrt (3/4) sqrt4 / sqrt3-sqrt3 / sqrt4 2 / sqrt3-sqrt3 / 2 2 / sqrt3 (1) -sqrt3 / 2 (1) 2 / sqrt3 (2/2 ) -sqrt3 / 2 (sqrt3 / sqrt3) 4 / (2sqrt3) -3 / (2sqrt3) 1 / (2sqrt3) 1 / (2sqrt3) (sqrt3 / sqrt3) sqrt3 / (2sqrt3sqrt3) = sqrt3 / (2xx3) = sqrt3 / 6