Válasz:
Magyarázat:
az adott fókuszból
csúcs
csúcs
használja a csúcsformát
grafikon {(y-x ^ 2/22 + x / 11-17 / 11) (y + 4) = 0 -20, 20, -10,10}
Mi a standard formája a parabola egyenletének, amelynek középpontjában a (16, -3) és az y = 31 irányvonal van?
A parabola egyenlete y = -1/68 (x-16) ^ 2 + 14 A parabola csúcspontja egyenlő távolságban van a fókusz (16, -3) és a direktrix (y = 31) között. Tehát a csúcs a (16,14) lesz. A parabola lefelé nyílik, és az egyenlet y = -a (x-16) ^ 2 + 14 A csúcs és a Directrix közötti távolság 17:. a = 1 / (4 * 17) = 1/68 Ezért a parabola egyenlete y = -1/68 (x-16) ^ 2 + 14 grafikon {-1/68 (x-16) ^ 2 + 14 [ -160, 160, -80, 80]} [Ans]
Mi a standard formája a parabola egyenletének, amelynek középpontjában a (7,9) és az y = 8 irányvonal?
A parabola egyenlete y = 1/2 (x-7) ^ 2 + 8.5 A parabola egyenlete y = a (xh) ^ 2 + k, ahol (h, k) a csúcs A parabola csúcsa egyenlő távolságban van a fókusztól (7,9) és y = 8. Tehát a csúcs (7,8,5). Mivel a fókusz a csúcs fölött van, a parabola felfelé nyílik és a> 0 A csúcs és a közvetlen irány közötti távolság d = (8,5-8) = 0,5, a = 1 / (4 * d) = 1 / (4 * 0,5) = 1/2 A parabola egyenlete y = 1/2 (x-7) ^ 2 + 8,5 gráf {1/2 (x-7) ^ 2 + 8.5 [-80, 80, -40, 40]} [Ans ]
Mi a standard formája a parabola egyenletének, amelynek középpontjában a (7,5) és az y = 4 irányvonal?
Y = 1 / 2x ^ 2-7x + 29 A parabola egy olyan pont, amely úgy mozog, hogy az adott ponttól a fókusznak nevezett távolság és egy adott sor, a directrix neve mindig egyenlő. Legyen a pont (x, y). A távolság (7,5) -től sqrt ((x-7) ^ 2 + (y-5) ^ 2) és az y = 4 távolsága | (y-4) / 1 |. Ezért a parabola egyenlete (x-7) ^ 2 + (y-5) ^ 2 = (y-4) ^ 2 vagy x ^ 2-14x + 49 + y ^ 2-10y + 25 = y ^ 2-8y +16 vagy -2y = -x ^ 2 + 14x-58 vagy y = 1 / 2x ^ 2-7x + 29 gráf {(y- (x ^ 2) / 2 + 7x-29) (y-4) (( x-7) ^ 2 + (y-5) ^ 2-0.02) = 0 [-6, 14, 0, 10]}