Válasz:
A parabola egyenlete
Magyarázat:
A parabola egyenlete
A parabola csúcspontja egyenlő távolságban van a fókusztól
Mivel a fókusz a csúcs felett van, a parabola felfelé és felfelé nyílik
A csúcs és a közvetlen irány közötti távolság
A parabola egyenlete
Mi az egyenlet a parabola standard formában, amelynek középpontjában a (12,5) és az y = 16 irányvonal van?
X ^ 2-24x + 32y-87 = 0 Legyen a (x, y) pont a parabola. A fókusztól a (12,5) -ig terjedő távolsága sqrt ((x-12) ^ 2 + (y-5) ^ 2) és az y = 16 irányvonaltól való távolsága | y-16 | Ezért az egyenlet sqrt ((x-12) ^ 2 + (y-5) ^ 2) = (y-16) vagy (x-12) ^ 2 + (y-5) ^ 2 = (y-16) ^ 2 vagy x ^ 2-24x + 144 + y ^ 2-10y + 25 = y ^ 2-32y + 256 vagy x ^ 2-24x + 22y-87 = 0 grafikon {x ^ 2-24x + 22y-87 = 0 [-27,5, 52,5, -19,84, 20,16]}
Mi a standard formája a parabola egyenletének, amelynek középpontjában a (16, -3) és az y = 31 irányvonal van?
A parabola egyenlete y = -1/68 (x-16) ^ 2 + 14 A parabola csúcspontja egyenlő távolságban van a fókusz (16, -3) és a direktrix (y = 31) között. Tehát a csúcs a (16,14) lesz. A parabola lefelé nyílik, és az egyenlet y = -a (x-16) ^ 2 + 14 A csúcs és a Directrix közötti távolság 17:. a = 1 / (4 * 17) = 1/68 Ezért a parabola egyenlete y = -1/68 (x-16) ^ 2 + 14 grafikon {-1/68 (x-16) ^ 2 + 14 [ -160, 160, -80, 80]} [Ans]
Mi a standard formája a parabola egyenletének, amelynek középpontjában a (7,5) és az y = 4 irányvonal?
Y = 1 / 2x ^ 2-7x + 29 A parabola egy olyan pont, amely úgy mozog, hogy az adott ponttól a fókusznak nevezett távolság és egy adott sor, a directrix neve mindig egyenlő. Legyen a pont (x, y). A távolság (7,5) -től sqrt ((x-7) ^ 2 + (y-5) ^ 2) és az y = 4 távolsága | (y-4) / 1 |. Ezért a parabola egyenlete (x-7) ^ 2 + (y-5) ^ 2 = (y-4) ^ 2 vagy x ^ 2-14x + 49 + y ^ 2-10y + 25 = y ^ 2-8y +16 vagy -2y = -x ^ 2 + 14x-58 vagy y = 1 / 2x ^ 2-7x + 29 gráf {(y- (x ^ 2) / 2 + 7x-29) (y-4) (( x-7) ^ 2 + (y-5) ^ 2-0.02) = 0 [-6, 14, 0, 10]}