Válasz:
Magyarázat:
Adott: szekvencia
Ez egy aritmetikai sorrend, melynek közös különbsége a
Közös különbség
Aritmetikai szekvencia egyenlet:
vagy az ötödik kifejezést további hozzáadásával találhatja meg
Az AP negyedik ciklusa megegyezik a hetedik ciklus háromszorosának kétszeresével. 1. Keresse meg az első kifejezést és a közös különbséget?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d helyettesítő értékek az (1) egyenletben, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) A (2) egyenletben lévő értékek helyettesítése: a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) A (3) és (4) egyenletek egyidejű megoldása során d = 2/13 a = -15/13
A GP első négy ciklusának összege 30, az utolsó négy kifejezés 960. Ha a GP első és utolsó ciklusa 2 és 512, akkor keresse meg a közös arányt.
2root (3) 2. Tegyük fel, hogy a szóban forgó GP közös aránya (cr) r és n ^ (th) kifejezés az utolsó kifejezés. Tekintettel arra, hogy a GP első ciklusa 2.:. "A GP" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2R ^ (n-2), 2r ^ (n-1)}. Adott, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (csillag ^ 1), és 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (csillag ^ 2). Azt is tudjuk, hogy az utolsó kifejezés 512.:. R ^ (n-1) = 512 .................... (csillag ^ 3). Most, (csillag ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, azaz (r ^ (n-
A geometriai szekvencia első ciklusa 200, az első négy kifejezés összege 324,8. Hogyan találja meg a közös arányt?
Minden geometriai szekvencia összege: s = a (1-r ^ n) / (1-r) s = összeg, a = kezdeti kifejezés, r = közös arány, n = kifejezés szám ... a, és n, így ... 324,8 = 200 (1-r ^ 4) / (1-r) 1.624 = (1-r ^ 4) / (1-r) 1.624-1.624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1,624) (3r ^ 4 -624) / (4r ^ 3-1,624). .5, .388, .399, .39999999, .3999999999999999 Tehát a határérték 0,4 vagy 4/10 lesz. Így a közös arány 4/10 ellenőrzés ... s (4) = 200 (1- (4 / 10) ^ 4)) / (1- (4/10)) = 324,8