Mi a távolság (–4, 3, 0) és (–1, 4, –2) között?

Mi a távolság (–4, 3, 0) és (–1, 4, –2) között?
Anonim

Válasz:

# # Sqrt14

Magyarázat:

A normál euklideszi metrika használatával # RR ^ 3 # ezt kapjuk

#d (- 4,3,0); (- 1,4,2) = sqrt ((- 4 - (- 1)) ^ 2+ (3-4) ^ 2 + (0 - (- 2)) ^ 2) #

# = Sqrt (9 + 1 + 4) #

# = Sqrt14 #

Válasz:

Közötti távolság #sqrt (14) # egységek

Magyarázat:

Ezt a forgatókönyvet háromszögek felhasználásával készítheti. Először az xy képet (2 szóköz) építjük. Ez a kép, ha úgy tetszik, a tényleges vektor árnyékának tekinthető 3 térben. Így két háromszögünk van, amelyek együttesen a Pythagoras-elv alapján oldhatók meg. Ahelyett # X ^ 2 + y ^ 2 # különbség van #sqrt (x ^ 2 + y ^ 2 + z ^ 2) #

Tehát az Ön kérdésére:

# (x_1, y_1, z_1) -> (-4,3,0) #

# (X_2, y_2, z_2) -> (- 1,4, -2) #

#sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2 + (z_2-z_1) ^ 2) #

#sqrt ((szín (fehér) (.) (- 1) - (- 4) színe (fehér) (.)) ^ 2+ (4-3) ^ 2 + ((- 2) -0) ^ 2) #

#sqrt (3 ^ 2 + 1 ^ 2 + (- 2) ^ 2) #