Válasz:
Magyarázat:
Julie egyszerre dob egy tisztességes piros kockát, és egyszer egy tisztességes kék kocka. Hogyan számolja ki azt a valószın uséget, hogy Julie kap egy hatot a piros kocka és a kék kocka egyaránt. Másodszor, számítsuk ki azt a valószínűséget, hogy Julie legalább egy hatot kap?
P ("Két hatos") = 1/36 P ("Legalább egy hat") = 11/36 Valószínűség, hogy egy tisztességes kockás dobáskor hatszoros lesz, 1/6. A független események A és B szorzási szabálya P (AnnB) = P (A) * P (B) Az első esetben az A esemény egy hatot kap a piros kockán, és a B esemény egy hatot kap a kék kockán . P (AnnB) = 1/6 * 1/6 = 1/36 A második esetben először azt szeretnénk megvizsgálni, hogy nincs-e hatos. Egy hatszög nem egy gördülékeny henger valószínűsége ny
Legyen f (x) = x-1. 1) Ellenőrizze, hogy az f (x) sem páros vagy páratlan. 2) Lehet-e az f (x) egy páros függvény és páratlan függvény összege? a) Ha igen, mutasson megoldást. Több megoldás van? b) Ha nem, bizonyítsa, hogy lehetetlen.
Legyen f (x) = | x -1 |. Ha f egyenlő, akkor f (-x) minden x esetében f (x) -nek felel meg. Ha f furcsa volt, akkor f (-x) egyenlő -f (x) minden x esetén. Figyelje meg, hogy x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Mivel 0 nem egyenlő 2-vel vagy -2-re, f nem sem páros, sem furcsa. Lehet, hogy f (x) + h (x), ahol g egyenletes és h páratlan? Ha ez igaz, akkor g (x) + h (x) = | x - 1 |. Hívja ezt az állítást 1. Cserélje ki az x-et. g (-x) + h (-x) = | -x - 1 | Mivel g egyenletes és h páratlan, van: g (x) - h (x) = | -x - 1 | Hívja ezt az állítá
Legyen S egy egységnyi terület. Tekintsünk olyan négyszögeket, amelyeknek egy csúcsa van az S. mindkét oldalán. Ha a, b, c és d a négyszög oldalainak hosszát jelöli, bizonyítsa, hogy 2 <= a ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 <= 4?
Legyen az ABCD egységterület négyzet. Tehát AB = BC = CD = DA = 1 egység. Legyen PQRS négyszög, amely a csúcs mindkét oldalán egy csúcsot tartalmaz. Itt hagyjuk, hogy PQ = b, QR = c, RS = dandSP = a Pythagoras thorem alkalmazása írjunk egy ^ 2 + b ^ 2 + c ^ 2 + d ^ 2 = x ^ 2 + y ^ 2 + (1-x) ^ 2 + (1-w) ^ 2 + w ^ 2 + (1-z) ^ 2 + z ^ 2 + (1-y) ^ 2 = 4 + 2 (x ^ 2 + y ^ 2 + z ^ 2 + w ^ 2-xyzw) = 2 + 2 (1 + x ^ 2 + y ^ 2 + z ^ 2 + w ^ 2-xyzw) = 2 + 2 ((x-1/2) ^ 2 + (y- 1/2) ^ 2 + (z-1/2) ^ 2 + (w-1/2) ^ 2) Most a probléma alapján 0 <= x <= 1 =>