Lim (e ^ x + x) ^ (1 / x) x 0 +?

Lim (e ^ x + x) ^ (1 / x) x 0 +?
Anonim

Válasz:

#lim_ (x-> 0 ^ +) (e ^ x + x) ^ (1 / x) = e ^ 2 #

Magyarázat:

#lim_ (x-> 0 ^ +) (e ^ x + x) ^ (1 / x) #

  • # (E ^ x + x) ^ (1 / x) = e ^ (ln (e ^ x + x) ^ (1 / x)) = e ^ (ln (e ^ x + x) / x) #

#lim_ (x-> 0 ^ +) ln (e ^ x + x) / x = _ (DLH) ^ ((0/0)) ##lim_ (x-> 0 ^ +) ((ln (e ^ x + x))) / ((x) ') # #=#

#lim_ (x-> 0 ^ +) (e ^ x + 1) / (e ^ x + x) = 2 #

Ebből adódóan, #lim_ (x-> 0 ^ +) (e ^ x + x) ^ (1 / x) = lim_ (x-> 0 ^ +) e ^ (ln (e ^ x + x) / x) = #

Készlet

#ln (e ^ x + x) / x = u #

# X-> 0 ^ + #

# U-> 2 #

#=# #lim_ (U-> 2) e ^ u = e ^ 2 #