Válasz:
Az átlagos érték az
Magyarázat:
Az átlagos érték
Szóval:
# = int_0 ^ 2 (x ^ 11 + 4x ^ 9 + 10x ^ 7 + 4x ^ 5 + x ^ 3) dx #
# = x ^ 12/12 + (4x ^ 10) / 10 + (6x ^ 8) / 8 + (4x ^ 6) / 6 + x ^ 4/4 _0 ^ 2 #
# = (2)^12/12+(2(2)^10)/5 + (3(2)^8)/4+(2(2)^6)/3+(2)^4/4#
# = 4948/5 = 9896/10=989.6#
Az f (x) = (x + 2) (x + 6) függvény grafikonja az alábbiakban látható. Milyen állítás van a függvényről? A függvény minden x valós értékre pozitív, ahol x> –4. A függvény negatív minden x valós értékre, ahol –6 <x <–2.
A függvény negatív minden x valós értékre, ahol –6 <x <–2.
Az irodában 6 nő átlagéletkora 31 éves. Az irodában 4 férfi átlagéletkora 29 éves. Mi az átlagéletkor (legközelebbi év) az irodában élő emberek közül?
30.2 Az átlagot az értékek összegének kiszámításával és a számmal osztva számítják ki. Például a 6 nő esetében, akik átlagértéke 31 volt, láthatjuk, hogy a korok összege 186: 186/6 = 31, és ugyanezt tehetjük a férfiaknál: 116/4 = 29 a férfiak és a nők összege és száma, hogy megtalálják az iroda átlagát: (186 + 116) /10=302/10=30.2
Az átlag a leggyakrabban használt középpont mértéke, de vannak olyan idők, amikor ajánlott az adatok megjelenítéséhez és elemzéséhez használt medián használata. Mikor lehet helyett használni a mediánt az átlag helyett?
Ha az adatkészletben néhány szélsőséges érték van. Példa: 1000 esetben van egy olyan adathalmaz, amely nem túl messze egymástól. Az átlaguk 100, mint a mediánjuk. Most csak egy esetet cserélsz egy esetre, amelynek értéke 100000 (csak azért, hogy extrém legyen). Az átlag drasztikusan (majdnem 200-ra emelkedik), míg a medián nem változik. Számítás: 1000 eset, átlag = 100, értékek összege = 100000 Lose one 100, 100000, értékek összege = 199900, átlag = 199,9 Medi&