Válasz:
Írja ki Pascal háromszögének hatodik sorát, és tegye meg a megfelelő helyettesítéseket.
Magyarázat:
Pascal háromszögje
Az ötödik sor számai 1, 5, 10, 10, 5, 1.
Ezek az ötödik sorrendű polinom kifejezésének együtthatók.
De mi a polinomunk
Az átlag a leggyakrabban használt középpont mértéke, de vannak olyan idők, amikor ajánlott az adatok megjelenítéséhez és elemzéséhez használt medián használata. Mikor lehet helyett használni a mediánt az átlag helyett?
Ha az adatkészletben néhány szélsőséges érték van. Példa: 1000 esetben van egy olyan adathalmaz, amely nem túl messze egymástól. Az átlaguk 100, mint a mediánjuk. Most csak egy esetet cserélsz egy esetre, amelynek értéke 100000 (csak azért, hogy extrém legyen). Az átlag drasztikusan (majdnem 200-ra emelkedik), míg a medián nem változik. Számítás: 1000 eset, átlag = 100, értékek összege = 100000 Lose one 100, 100000, értékek összege = 199900, átlag = 199,9 Medi&
Bizonyítsuk be a következő állítást. Legyen ABC bármilyen jobb háromszög, a C pontban a megfelelő szög. A C-től a hipotenuszhoz vezető magasság a háromszöget két, egymáshoz és az eredeti háromszöghez hasonló háromszögre osztja?
Lásd lentebb. A kérdés szerint a DeltaABC egy jobb háromszög, amelyen a / _C = 90 ^ @, és a CD a hypotenuse AB magassága. Bizonyítás: Tegyük fel, hogy / _ABC = x ^ @. Tehát, szögBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Most, CD merőleges AB. Szóval, szögBDC = szögADC = 90 ^ @. DeltaCBD-ben a szögBCD = 180 ^ @ - szögBDC - szögCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Hasonlóan, szögACD = x ^ @. Most DeltaBCD és DeltaACD esetén a CBD szög ACD szöge és a BDC szög szög. Tehát AA hasonló
Hogyan használhatom Pascal háromszögét a binomiális (d-5y) ^ 6 kibővítéséhez?
Itt van egy videó a Pascal háromszögének használatáról a binomiális bővítéshez SMARTERTEACHER YouTube