Válasz:
Magyarázat:
Az első és a harmadik egyenletek szorzata
# {(2a + 2b-c-d = 0), (a-2b + c-2d = 0), (2a-3b-3c + 2d = 0):} #
Az első két egyenlet hozzáadása:
# 3a-3d = 0 #
Ennélfogva:
#a = d #
Behelyettesítve
# {(a + 2b-c = 0), (4a-3b-3c = 0):} #
Az első egyenletet az
# {(3a + 6b-3c = 0), (4a-3b-3c = 0):} #
Ezek közül az első kivonása a másodikból:
# A-9b = 0 #
Ennélfogva:
#a = 9b #
Egy korábbi egyenletből:
#c = a + 2b = 9b + 2b = 11b #
Írás
# (a, b, c, d) = (9lambda, lambda, 11lbda, 9lambda) #
A kvadratikus egyenlet diszkriminánsa -5. Melyik válasz leírja az egyenlet megoldásának számát és típusát: 1 komplex megoldás 2 valós megoldás 2 komplex megoldás 1 valódi megoldás?
A négyzetes egyenletnek két összetett megoldása van. A kvadratikus egyenlet megkülönböztetője csak információt adhat az űrlap egyenletéről: y = ax ^ 2 + bx + c vagy parabola. Mivel ennek a polinomnak a legmagasabb foka 2, nem lehet több, mint 2 megoldás. A diszkrimináns egyszerűen a négyzetgyök szimbólum (+ -sqrt ("") alatt található, de nem maga a négyzetgyök szimbólum. + -sqrt (b ^ 2-4ac) Ha a b ^ 2-4ac diszkrimináns kisebb, mint nulla (vagyis negatív szám), akkor egy negatív a négyz
X - y = 3 -2x + 2y = -6 Mit lehet mondani az egyenletrendszerről? Van egy megoldás, végtelen sok megoldás, nincs megoldás vagy 2 megoldás.
Végtelenül sok két egyenletünk van: E1: x-y = 3 E2: -2x + 2y = -6 Itt van a választásunk: Ha az E1-et pontosan E2-nek tudom tenni, akkor két kifejezésünk van ugyanazon a soron, így végtelen sok megoldás van. Ha az E1-ben és az E2-ben az x és y-kifejezéseket ugyanolyan tudom tenni, de különböző számokkal egyenlőek, akkor a vonalak párhuzamosak, ezért nincsenek megoldások.Ha egyiket sem tudom megtenni, akkor két különböző sorom van, amelyek nem párhuzamosak, így valahol lesz egy metsz
A diszkrimináns segítségével határozza meg az egyenletnek megfelelő megoldások számát és típusát? x ^ 2 + 8x + 12 = 0 A.no valódi megoldás B.one valódi megoldás C. két racionális megoldás D. két irracionális megoldás
C. két racionális megoldás A négyzetes egyenlet megoldása: a * x ^ 2 + b * x + c = 0 x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In a vizsgált probléma: a = 1, b = 8 és c = 12 helyettesítő, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 vagy x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 és x = (-8 - 4) / 2 x = (- 4) / 2 és x = (-12) / 2 x = - 2 és x = -6