Válasz:
vagy
Magyarázat:
Az általános lejtéspont formátum használata:
lejtővel
Egy lejtőn
nekünk van:
(lejtőpontos formában).
Ha ezt standard formába kívánjuk konvertálni:
Két gráfom van: egy lineáris gráf 0,751 m / s meredekséggel, és egy grafikon, amely növekvő sebességgel növekszik, átlagosan 0,724 m / s meredekséggel. Mit mond ez a grafikonokban ábrázolt mozgásról?
Mivel a lineáris gráfnak állandó lejtése van, nulla gyorsulása van. A másik grafikon pozitív gyorsulást jelent. A gyorsulást {Deltavelocity} / {Deltatime} -ként határoztuk meg. Tehát, ha állandó lejtése van, a sebesség nem változik, és a számláló nulla. A második grafikonban a sebesség változik, ami azt jelenti, hogy az objektum gyorsul
A mérföldben mért távolság arányos az órákban eltelt idővel. Az Ebony állandó sebességgel halad, és a haladást egy koordináta síkon ábrázolja. A pontot (3, 180) ábrázoljuk. Milyen sebességgel vezet az Ebony mérföldenként óránként?
60 "mérföld per óra" "hagyja, hogy a távolság = d és az idő = t" ", majd a" dpropt rArrd = ktlarrcolor (kék) "k az arányosság állandója" ", hogy k-t használjon az adott feltételhez (" 3.180) ", ami t = 3 és d = 180 "d = ktrArrk = d / t = 180/3 = 60" állandó "60" mérföld / óra sebességgel vezet "
Az XY szegmens egy olyan repülőgép útvonalát jelenti, amely áthalad a koordinátákon (2, 1) és (4 5). Mekkora egy olyan vonal lejtése, amely egy másik repülőgép útját képviseli, amely párhuzamosan halad az első repülőgéppel?
"lejtés" = 2 Számítsa ki az XY lejtését a szín (kék) "gradiens képlet" színével (narancssárga) "Emlékeztető" szín (piros) (bar (ul (| színes (fehér) (2/2) szín (fekete)) (m = (y_2-y_1) / (x_2-x_1)) szín (fehér) (2/2) |))) ahol m a lejtőt és a (x_1, y_1), (x_2, y_2) "2 koordinátapontot jelöli. " A 2 pont itt (2, 1) és (4, 5) legyen (x_1, y_1) = (2,1) "és" (x_2, y_2) = (4,5) rArrm = (5-1) / (4-2) = 4/2 = 2 A következő tényt ismerni kell a kérdé