Válasz:
a = 2
Magyarázat:
Bővítéskor a konstans kifejezést el kell távolítani, hogy biztosítsuk a polinom teljes függőségét az x-en. Figyeljük meg, hogy a
Az a = 2 beállítás megszünteti az állandó értéket, valamint a
(Javítson meg, ha tévedek, kérem)
A 4 egész szám első három kifejezése a számtani P. és az utolsó három kifejezés a Geometric.P.-ben található. Hogyan találjuk meg ezeket a 4 számot? (1. + utolsó kifejezés = 37) és (a két egész szám összege közepén van) 36)
"A Reqd. Integers", 12, 16, 20, 25. T_1, t_2, t_3 és t_4 kifejezéseket hívjuk, ahol t_i ZZ-ben, i = 1-4. Tekintettel arra, hogy a t_2, t_3, t_4 kifejezések GP-t alkotnak, t_2 = a / r, t_3 = a, és t_4 = ar, ahol, ane0 .. Tekintettel arra is, hogy t_1, t_2 és t_3 AP-ben 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Így összesen, van, a Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, és t_4 = ar. A megadott értékek szerint t_2 + t_3 = 36rArra / r + a = 36, azaz a (1 + r) = 36r ....................... .................................... (ast_1). Tovább
Legyen f egy folyamatos függvény: a) Keresse meg az f (4) -t, ha _0 ^ (x ^ 2) f (t) dt = x sin πx az összes x esetében. b) Keresse meg az f (4) -t, ha _0 ^ f (x) t ^ 2 dt = x sin πx az összes x esetében?
A) f (4) = pi / 2; b) f (4) = 0 a) Mindkét oldal megkülönböztetése. A bal oldali Calculus második alapvető elméletén és a jobb oldalon lévő termék- és láncszabályokon keresztül azt látjuk, hogy a differenciálódás azt mutatja, hogy: f (x ^ 2) * 2x = sin (pix) + pixcos (pix ) Az x = 2 jelzése azt mutatja, hogy f (4) * 4 = sin (2pi) + 2picos (2pi) f (4) * 4 = 0 + 2pi * 1 f (4) = pi / 2 b) Integrálja a belső kifejezést. int_0 ^ f (x) t ^ 2dt = xsin (pix) [t ^ 3/3] _0 ^ f (x) = xsin (pix) Értékelje. (f (x)) ^