A kvadratikus egyenlet diszkriminánsa -5. Melyik válasz leírja az egyenlet megoldásának számát és típusát: 1 komplex megoldás 2 valós megoldás 2 komplex megoldás 1 valódi megoldás?
A négyzetes egyenletnek két összetett megoldása van. A kvadratikus egyenlet megkülönböztetője csak információt adhat az űrlap egyenletéről: y = ax ^ 2 + bx + c vagy parabola. Mivel ennek a polinomnak a legmagasabb foka 2, nem lehet több, mint 2 megoldás. A diszkrimináns egyszerűen a négyzetgyök szimbólum (+ -sqrt ("") alatt található, de nem maga a négyzetgyök szimbólum. + -sqrt (b ^ 2-4ac) Ha a b ^ 2-4ac diszkrimináns kisebb, mint nulla (vagyis negatív szám), akkor egy negatív a négyz
Hogyan oldja meg az abszolút érték abszolút abszolút abszolút értékét (2x - 3) <5?
Az eredmény -1 <x <4. A magyarázat a következő: Az abszolút érték (ami mindig zavaró) elnyomása érdekében alkalmazhatja a szabályt: | z | <k, k RR => -k <z <k. Ezzel meg kell adnod, hogy | 2x-3 | <5 => - 5 <2x-3 <5, ami két egyenlőtlenség összeállítása. Ezeket külön kell megoldani: 1.) - 5 <2x-3 => - 2 <2x => - 1 <x 2.) 2x-3 <5 => 2x <8 => x <4 És végül mindkét az eredmények együtt (ami mindig elegánsabb), a végeredményt - 1 &
A diszkrimináns segítségével határozza meg az egyenletnek megfelelő megoldások számát és típusát? x ^ 2 + 8x + 12 = 0 A.no valódi megoldás B.one valódi megoldás C. két racionális megoldás D. két irracionális megoldás
C. két racionális megoldás A négyzetes egyenlet megoldása: a * x ^ 2 + b * x + c = 0 x = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a In a vizsgált probléma: a = 1, b = 8 és c = 12 helyettesítő, x = (-8 + - sqrt (8 ^ 2 - 4 * 1 * 12)) / (2 * 1 vagy x = (-8+) - sqrt (64 - 48)) / (2 x = (-8 + - sqrt (16)) / (2 x = (-8 + - 4) / (2 x = (-8 + 4) / 2 és x = (-8 - 4) / 2 x = (- 4) / 2 és x = (-12) / 2 x = - 2 és x = -6