Válasz:
A végtelen számú relatív extrém létezik
Magyarázat:
Először csatlakoztassuk az intervallum végpontjait
Ezután meghatározzuk a kritikus pontokat úgy, hogy a derivált nulla értékre állítjuk be.
Sajnos, ha ezt az utolsó egyenletet ábrázolja, a következőt kapja
Mivel a származék grafikonja végtelen számú gyökeret tartalmaz, az eredeti funkciónak végtelen számú helyi extrémája van. Ezt az eredeti függvény grafikonja is szemlélteti.
Azonban egyikük sem haladta meg
Milyen tételt garantál egy abszolút maximális érték és abszolút minimális érték létezését az f számára?
Általában nincs biztosíték arra, hogy az f abszolút maximális vagy minimális értéke fennálljon. Ha f egy zárt intervallumban [a, b] folyamatos (azaz zárt és határolt intervallumon), akkor az Extreme Value Theor garantálja az [a, b] intervallumban az f abszolút maximális vagy minimális értékét. .
Hogyan oldja meg az abszolút érték abszolút abszolút abszolút értékét (2x - 3) <5?
Az eredmény -1 <x <4. A magyarázat a következő: Az abszolút érték (ami mindig zavaró) elnyomása érdekében alkalmazhatja a szabályt: | z | <k, k RR => -k <z <k. Ezzel meg kell adnod, hogy | 2x-3 | <5 => - 5 <2x-3 <5, ami két egyenlőtlenség összeállítása. Ezeket külön kell megoldani: 1.) - 5 <2x-3 => - 2 <2x => - 1 <x 2.) 2x-3 <5 => 2x <8 => x <4 És végül mindkét az eredmények együtt (ami mindig elegánsabb), a végeredményt - 1 &
Hogyan találja meg az f abszolút maximális és abszolút minimális értékeit az adott intervallumon: f (t) = t sqrt (25-t ^ 2) a [-1, 5] -en?
Reqd. a szélső értékek -25/2 és 25/2. A t = 5sinx, t értéke [-1,5]. Figyeljük meg, hogy ez a helyettesítés megengedett, mert t a [-1,5] rArr -1 <= t <= 5rArr -1 <= 5sinx <= 5 rArr -1/5 <= sinx <= 1, ami jó, mint a bűn szórakozásának tartománya. [-1,1]. Most, f (t) = tsqrt (25-t ^ 2) = 5sinx * sqrt (25-25sin ^ 2x) = 5sinx * 5cosx = 25sinxcosx = 25/2 (2sinxcosx) = 25 / 2sin2x Mivel, -1 <= sin2x <= 1 rArr -25/2 <= 25 / 2sin2x <= 25/2 rArr -25/2 <= f (t) <= 25/2. a végtagok -25/2 és 25/2.