Válasz:
Függőleges aszimptoták lesznek
Magyarázat:
Lesz aszimptoták.
Amikor a nevező egyenlő
Állítsuk be a nevezőt
Mivel a funkció
Végül, vegye figyelembe, hogy a funkció
Remélhetőleg ez segít!
Melyek az f (x) = (1 + 1 / x) / (1 / x) aszimptot (ok) és lyuk (ok)?
A lyuk x = 0. f (x) = (1 + 1 / x) / (1 / x) = x + 1 Ez egy lineáris függvény az 1-es és az y-1-es metszéssel. Minden x-ben definiálva, kivéve x = 0, mert 0 nincs meghatározva.
Melyek az f (x) = 1 / (2-x) aszimptot (ok) és lyuk (ok)?
Ennek a funkciónak az aszimptotái x = 2 és y = 0. Az 1 / (2-x) racionális funkció. Ez azt jelenti, hogy a függvény alakja ilyen: grafikon {1 / x [-10, 10, -5, 5]} Most az 1 / (2-x) függvény ugyanazzal a gráfszerkezettel követi, de néhány csíkkal . A gráfot először vízszintesen a 2 jobbra mozgatja. Ezt követi egy reflexió az x-tengely fölött, ami egy grafikonot eredményez: grafikon {1 / (2-x) [-10, 10, -5, 5 ]} Ezzel a gráfgal szem előtt tartva, az aszimptoták megtalálásához mindent, ami sz&
Melyek az f (x) = (sinx + cosx) / (x ^ 3-2x ^ 2 + x) aszimptot (ek) és lyuk (ok)?
X = 0 és x = 1 az aszimptoták. A grafikon nem tartalmaz lyukakat. f (x) = (sinx + cosx) / (x ^ 3-2x ^ 2 + x) Faktor, a nevező: f (x) = (sinx + cosx) / (x (x ^ 2-2x + 1)) f (x) = (sinx + cosx) / (x (x-1) (x-1)) Mivel egyik tényező sem törölhető, nincsenek "lyukak", akkor a nevező 0-val egyenlő, hogy megoldja az aszimptotákat: x (x-1) (x-1) = 0 x = 0 és x = 1 az aszimptoták. grafikon {(sinx + cosx) / (x ^ 3-2x ^ 2 + x) [-19.5, 20.5, -2.48, 17.52]}