Bármely számot adott
Aztán
és aztán:
amely bizonyítja a határértéket.
Ez a kérdés az, hogy a 11 évesek a frakciókat használják a válasz megadására ...... meg kell találniuk, hogy 1/3-a 33 3/4 ..... nem akarok válaszolni ..... hogy felállítsuk a problémát, hogy segítsek neki ... hogyan osztja meg a frakciókat?
11 1/4 Itt nem osztja meg a frakciókat. Te valójában szaporodsz. A kifejezés 1/3 * 33 3/4. Ez 11 1/4. Ennek egyik módja az lenne, ha 33 3/4-t nem megfelelő frakcióvá alakítanánk. 1 / cancel3 * cancel135 / 4 = 45/4 = 11 1/4.
A konvergencia definíciója segítségével hogyan bizonyíthatja, hogy a {5+ (1 / n)} szekvencia n = 1-től a végtelenségig konvergál?
Legyen: a_n = 5 + 1 / n, akkor bármely m, n NN-ben n> m: abs (a_m-a_n) = abs ((5 + 1 / m) - (5 + 1 / n)) abs (a_m -a_n) = abs (5 + 1 / m -5-1 / n) abs (a_m-a_n) = abs (1 / m -1 / n) n> m => 1 / n <1 / m: abs (a_m-a_n) = 1 / m -1 / n és 1 / n> 0: abs (a_m-a_n) <1 / m. Valamely epsilon> 0 értékű valódi számot választva válassza az N> 1 / epsilon egész számot. Minden m, n> N egész szám esetében: abs (a_m-a_n) <1 / N abs (a_m-a_n) <epsilon, amely bizonyítja Cauchy feltételét egy szekvencia konvergenciájáho
A konvergencia definíciója segítségével hogyan bizonyíthatja, hogy a {2 ^ -n} szekvencia n = 1-től a végtelenségig konvergál?
Használja az exponenciális függvény tulajdonságait az N meghatározásához, például | 2 ^ (- n) -2 ^ (- m) | <epsilon minden m, n> N esetén A konvergencia definíciója szerint a {a_n} konvergál, ha: AA epsilon> 0 "" EE N: AA m, n> N "" | a_n-a_m | <epsilon Szóval, ha az epsilon> 0, akkor N> log_2 (1 / epsilon) és m, n> N m m értéke n <m, n (2 ^ (- m) - 2 ^ (- n))> 0 így | 2 ^ (- m) - 2 ^ (- n) | = 2 ^ (- m) - 2 ^ (- n) 2 ^ (- m) - 2 ^ (- n) = 2 ^ (- m) (1- 2 ^ (mn)) Most, amikor 2 ^