Válasz:
Is
Magyarázat:
Az adott 3, 2, -1 nullákból
Egyenleteket állítottunk fel
Legyen a tényezők
bővülő
Kérjük, tekintse meg a
Isten áldja …. Remélem, a magyarázat hasznos.
Írjon egy egyszerűsített kvázikus egyenletet egész szám-együtthatókkal és a pozitív vezető együtthatókkal, amennyire csak lehetséges, amelynek egyetlen gyökerei -1/3 és 0, és kettős gyökérük 0,4?
75x ^ 4-35x ^ 3-8x ^ 2 + 4x = 0 Gyökereink: x = -1 / 3, 0, 2/5, 2/5 Aztán mondhatjuk: x + 1/3 = 0, x = 0, x-2/5 = 0, x-2/5 = 0 Ezután: (x + 1/3) (x) (x-2/5) (x-2/5) = 0 És most kezdődik a szorzás: (x ^ 2 + 1 / 3x) (x-2/5) (x-2/5) = 0 (x ^ 2 + 1 / 3x) (x ^ 2-4 / 5x + 4/25) = 0 x ^ 4 + 1 / 3x ^ 3-4 / 5x ^ 3-4 / 15x ^ 2 + 4 / 25x ^ 2 + 4 / 75x = 0 75x ^ 4 + 25x ^ 3-60x ^ 3-20x ^ 2 + 12x ^ 2 + 4x = 0 75x ^ 4-35x ^ 3-8x ^ 2 + 4x = 0
Hogyan írsz egy legkisebb fokú polinomfüggvényt az integrált együtthatókkal, amelyek az adott 5, -1, 0 nullákkal rendelkeznek?
A polinom az (x-nullák) terméke: x ^ 3-4x ^ 2-5 ^ x A polimom tehát (x-5) (x + 1) (x-0) = x ^ 3-4x ^ 2 -5x vagy többszöröse.
Hogyan írsz egy legkisebb fokú polinomfüggvényt, amely valós együtthatókat tartalmaz, a következő nullákat -5,2, -2 és egy 1-es vezető együtthatót?
A szükséges polinom P (x) = x ^ 3 + 5x ^ 2-4x-20. Tudjuk, hogy ha az a valódi polinom x értéke (mondjuk), akkor az x-a a polinom tényezője. Legyen P (x) a szükséges polinom. Itt -5,2, -2 a szükséges polinom nullái. a {x - (- 5)}, (x-2) és {x - (- 2)} a szükséges polinom tényezői. azt jelenti, hogy P (x) = (x + 5) (x-2) (x + 2) = (x + 5) (x ^ 2-4) P (x) = x ^ 3 + 5x ^ 2-4x- Ezért a szükséges polinom P (x) = x ^ 3 + 5x ^ 2-4x-20