Az érintővonal egyenlete a következő:
hol
Ennek az érintővonalnak a meredeksége
hol
enged
a közös tényező egyszerűsítése
Mivel az érintővonal áthalad a ponton
Tekintettel az érintési pont abszcisszájára
lehetővé teszi az ordinátáját
A tangenciás pont koordinátái
lehetővé teszi az összes ismert érték helyettesítését az érintővonal egyenletében az érték megtalálásához
ezért a tangens vonal egyenlete a pontban
Egy vonal egyenlete 2x + 3y - 7 = 0, talál: - (1) a vonal (2) lejtése, az adott vonalra merőleges vonal egyenlete, és az x-y + 2 = vonal metszéspontján áthaladva. 0 és 3x + y-10 = 0?
-3x + 2y-2 = 0 szín (fehér) ("ddd") -> szín (fehér) ("ddd") y = 3 / 2x + 1 Első rész sok részletben, amely bemutatja az első elvek működését. Ha egyszer használják ezeket, és a parancsikonokat használják, akkor sokkal kevesebb sort használunk. szín (kék) ("Határozza meg a kezdeti egyenletek elkapását") x-y + 2 = 0 "" ....... egyenlet (1) 3x + y-10 = 0 "" .... egyenlet ( 2) Kivonja az x-t az Eqn (1) mindkét oldaláról, megadva a -y + 2 = -x-t Mindkét olda
Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Mi az f (x) = 6x-x ^ 2 tangens vonalának egyenlete x = -1-ben?
Lásd alább: Az első lépés az f első deriváltjának megtalálása. f (x) = 6x-x ^ 2 f '(x) = 6-2x Ezért: f' (- 1) = 6 + 2 = 8 A 8-as érték értéke az, hogy ez az f gradiens, ahol x = - 1. Ez az az érintkezési vonal gradiense is, amely az adott pont grafikonját érinti. Tehát a vonal függvényünk jelenleg y = 8x. Ugyanakkor meg kell találnunk az y-elfogást is, de ehhez szükségünk van az y koordinátájára is, ahol x = -1. Csatlakoztassa az x = -1-et az f-re. f (-1) = - 6- (1) = - 7