Válasz:
A körök átfedik egymást
Magyarázat:
a távolság a központtól a központig
Az A és B kör sugarainak összege
A sugárok összege
következtetés: a körök átfedik egymást
Isten áldja …. Remélem, a magyarázat hasznos.
Az A kör középpontja (12, 9) és területe 25 pi. A B körnek a (3, 1) és a 64 pi területe van. Átfedik a körök?
Igen Először meg kell találnunk a két kör közepei közötti távolságot. Ez azért van, mert ez a távolság ott van, ahol a körök közelebb kerülnek egymáshoz, így ha átfedik, akkor ez a vonal mentén lesz. Ennek a távolságnak a megállapításához használhatjuk a távolság képletet: d = sqrt ((x_1-x_2) ^ 2 + (y_1-y_2) ^ 2) d = sqrt ((12-3) ^ 2 + (9-1) ^ 2 ) = sqrt (81 + 64) = sqrt (145) ~~ 12.04 Most meg kell találnunk minden kör sugarát. Tudjuk, hogy egy kör ter
Az A kör középpontja (3, 5) és területe 78 pi. A B kör középpontja (1, 2) és területe 54 pi. Átfedik a körök?
Igen Először is, szükségünk van a két központ közötti távolságra, azaz D = sqrt ((Deltax) ^ 2 + (Deltay) ^ 2) D = sqrt ((5-2) ^ 2 + (3-1) ^ 2) = sqrt (3 ^ 2 + 2 ^ 2) = sqrt (9 + 4) = sqrt (13) = 3.61 Most szükségünk van a sugárok összegére, mivel: D> (r_1 + r_2), "Körök nem fedik egymást" D = (r_1 + r_2); a "Körök csak" D <(r_1 + r_2); "Körök átfedik a" pir_1 "" ^ 2 = 78pi r_1 "" ^ 2 = 78 r_1 = sqrt78 pir_2 "" ^ 2 = 54pi r_2 "" ^
Az A kör középpontja (1, 5) és területe 24 pi. A B körnek van egy középpontja (8, 4) és területe 66 pi. Átfedik a körök?
Igen, a körök átfedik egymást. A távolság az A kör közepétől a kör közepéig B = 5sqrt2 = 7.071 Sugáruk összege = sqrt66 + sqrt24 = 13.023 Isten áldja .... Remélem, a magyarázat hasznos.