A létra alja 4 méterre van az épület oldalától. A létra tetejének 13 méterre kell lennie a földtől. Mi a legrövidebb létrát, amelyik elvégzi a munkát? Az épület alapja és a talaj egy derékszögű.
13,6 m Ez a probléma lényegében az a = 4 és a b = 13 oldalú, derékszögű háromszög hipotenézisét kéri, ezért c = sqrt (4 ^ 2 + 13 ^ 2) c = sqrt (185) m
Az A pozícióvektora derékszögű koordinátái (20,30,50). A B pozícióvektora derékszögű koordinátákkal rendelkezik (10,40,90). Melyek az A + B pozícióvektor koordinátái?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Legyen 5a + 12b és 12a + 5b egy derékszögű háromszög oldalhossza, a 13a + kb pedig a hypotenuse, ahol a, b és k pozitív egész számok. Hogyan találja meg a k legkisebb lehetséges értékét és a k és a b legkisebb értékeit?
K = 10, a = 69, b = 20 Pythagoras-tétel szerint: (13a + kb) ^ 2 = (5a + 12b) ^ 2 + (12a + 5b) ^ 2 Ez: 169a ^ 2 + 26kab + k ^ 2b ^ 2 = 25a ^ 2 + 120ab + 144b ^ 2 + 144a ^ 2 + 120ab + 25b ^ 2 szín (fehér) (169a ^ 2 + 26kab + k ^ 2b ^ 2) = 169a ^ 2 + 240ab + 169b ^ 2 Kivonja a bal oldalt mindkét végén, hogy megtalálja: 0 = (240-26k) ab + (169-k ^ 2) b ^ 2 szín (fehér) (0) = b ((240-26k) a + ( 169-k ^ 2) b) Mivel b> 0 szükséges: (240-26k) a + (169-k ^ 2) b = 0 Ezután, mivel a, b> 0 szükséges (240-26k) és (169-k ^ 2) ellentétes jelekkel. Ha k