Válasz:
Domain:
Hatótávolság:
Magyarázat:
Annak érdekében, hogy megtaláljuk a funkció tartományát, figyelembe kell venni azt a tényt, hogy valós számok esetén csak a pozitív szám.
Más szóval, a definiálandó függvényhez képest a négyzetgyök alatt lévő kifejezésre pozitívnak kell lennie.
# 9 - x ^ 2> = 0 #
# x ^ 2 <= 9 jelenti | x | <= 3 #
Ez azt jelenti, hogy van
#x> = -3 "" # és# "" x <= 3 #
Bármely érték esetén
Most a tartomány. Bármely érték esetén
A maximális érték a kifejezés a radikális alatt lehet
#9 - 0^2 = 9#
ami azt jelenti, hogy a minimális a függvény értéke lesz
#y = -sqrt (9) = -3 #
Ezért a funkció tartománya lesz
grafikon {-sqrt (9-x ^ 2) -10, 10, -5, 5}
Legyen az f (x) tartománya [-2.3] és a tartomány [0,6]. Mi az f (-x) tartománya és tartománya?
A tartomány a [-3, 2] intervallum. A tartomány a [0, 6] intervallum. Pontosan ugyanúgy, mint ez, ez nem funkció, hiszen tartománya csak a -2.3 szám, míg a tartomány egy intervallum. De feltételezve, hogy ez csak egy hiba, és a tényleges tartomány a [-2, 3] intervallum, ez a következő: Legyen g (x) = f (-x). Mivel az f a saját változóját csak a [-2, 3], az [x, 3], -x (negatív x) tartományban kell megadni, a [-3, 2] tartományban kell lennie, ami a g tartomány. Mivel az g értéket az f függvényen kereszt
Mi a tartomány és a 3x-2 / 5x + 1 tartomány és a függvény tartománya és tartománya?
A tartomány mindegyik, kivéve -1/5, ami az inverz tartománya. A tartomány minden valós, kivéve a 3/5, ami az inverz tartománya. f (x) = (3x-2) / (5x + 1) van definiálva és valós értékek mindegyik x kivételével -1/5 esetén, tehát az f tartománya és az f ^ -1 tartomány y = (3x) tartománya. -2) / (5x + 1) és x megoldása 5xi + y = 3x-2, így 5xi-3x = -y-2, és így (5y-3) x = -y-2, így végül x = (- y-2) / (5Y-3). Látjuk, hogy y! = 3/5. Tehát az f tartománya minden real, kiv
Ha f (x) = 3x ^ 2 és g (x) = (x-9) / (x + 1) és x! = - 1, akkor milyen f (g (x)) egyenlő? g (f (x))? f ^ -1 (x)? Milyen lesz az f (x) tartomány, tartomány és nulla? Mi lenne a g (x) tartomány tartománya, tartománya és nulla?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = gyökér () (x / 3) D_f = {x RR-ben}, R_f = {f (x) RR-ben; f (x)> = 0} D_g = {x RR-ben; x! = - 1}, R_g = {g (x) az RR-ben; g (x)! = 1}