Válasz:
P (20 jobbkezes diák)
Ez valószínűsíthető
Magyarázat:
P (balkezes) =
P (jobbkezes) = 1 - P (balkezes) =
Ahhoz, hogy a 20 diák közül egyik sem maradhasson balra, azt jelenti, hogy mindenkinek joga van.
=
=
=
Ez valószínűsíthető
Három kártyát véletlenszerűen választanak ki egy 7-es csoportból. A kártyák közül kettőt nyerő számmal jelöltek. Mekkora a valószínűsége annak, hogy a 3 kártya egyikének sem lesz nyerő száma?
P ("nem választja ki a győztest") = 10/35 3 kártyát veszünk egy 7-es csoportból. Használhatjuk a kombinációs képletet a különböző módok számának megtekintéséhez: C_ (n, k) = ( n!) / ((k!) (nk)!) n = "populációval", k = "csákány" C_ (7,3) = (7!) / ((3!) (7-3)!) = (7!) / (3! 4!) = (7xx6xx5xx4!) / (3xx2xx4!) = 35 Ebből a 35 módból szeretnénk kiválogatni azokat a három kártyát, amelyeknek nincs két nyertes lapja. Ezért a 2 győztes kártyát a
A gyerekek megkérdezték, hogy utaztak-e az euróra. 68 gyerek jelezte, hogy euróra utazott, és 124 gyerek azt mondta, hogy nem jártak Európába. Ha egy gyereket véletlenszerűen választanak ki, akkor mi a valószínűsége annak, hogy egy gyereket, aki Euro-ba ment?
31/48 = 64.583333% = 0.6453333 A probléma megoldásának első lépése a gyerekek összmennyiségének megállapítása, így kitalálhatja, hogy hány gyerek járt Európába, hogy hány gyerek van. Úgy fog kinézni, mint 124 / t, ahol t a gyerekek teljes összegét jelenti. Ahhoz, hogy kitaláljuk, hogy mi van, 68 + 124-et találtunk, ami megadja nekünk az összes megkérdezett gyerek összegét. 68 + 124 = 192 Így 192 = t A kifejezésünk 124/192 lesz. Most, hogy leegyszerűsítsük:
Sok éven át 15 órakor tanulmányozta, hogy hányan várják a bankban a sorban tartózkodó embereket, és valószínűsített eloszlást hozott létre a 0, 1, 2, 3 vagy 4 fő számára. A valószínűségek 0,1, 0,3, 0,4, 0,1 és 0,1. Mekkora a valószínűsége annak, hogy legalább 3 ember sorban van péntek délután 15 órakor?
Ez egy MINDEN ... VAGY helyzet. Hozzáadhatja a valószínűségeket. A feltételek exkluzívak, vagyis: nem lehet 3 és 4 fő egy sorban. 3 ember vagy 4 ember van sorban. Add hozzá: P (3 vagy 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Ellenőrizze a választ (ha van ideje a teszt során), az ellenkező valószínűség kiszámításával: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 És ez és a válasz 1,0-ig terjed, ahogy kellene.