Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Az L egyenes áthalad a 0 (12) és (10, 4) pontokon. Keresse meg az L-vel párhuzamos egyenes egyenletét és áthalad a ponton (5, –11). Grafikonpapír nélkül és grafikonok segítségével dolgozzon ki
"y = -4 / 5x-7>" a "szín (kék)" lejtés-elfogó formában lévő vonal egyenlete ". • szín (fehér) (x) y = mx + b" ahol m a lejtő és a b az y-elfogás "" kiszámításához m használja a "szín (kék)" gradiens képletet "• szín (fehér) (x) m = (y_2-y_1) / (x_2-x_1)" let "(x_1, y_1) = (0,12) "és" (x_2, y_2) = (10,4) rArrm = (4-12) / (10-0) = (- 8) / 10 = -4 / 5 rArr "L vonal a lejtés "= -4 / 5 •" A párhuzamos vonalak egyenlő lejtők
Az A és B vonal merőleges. Az A vonal lejtése -0,5. Mi az értéke x, ha a B vonal lejtése x + 6?
X = -4 Mivel a vonalak merőlegesek, tudjuk, hogy a két termék terméke -1-es gradiens, így m_1m_2 = -1 m_1 = -0,5 m_2 = x + 6 -0,5 (x + 6) = - 1 x + 6 = -1 / -0,5 = 1 / 0,5 = 2 x = 2-6 = -4