Válasz:
Magyarázat:
Adott 2 merőleges vonal a lejtőkkel
# m_1 "és" m_2 # azután
#COLOR (piros) (bar (ul (| színű (fehér) (A / A) színes (fekete) (m_1xxm_2 = -1) színe (fehér) (A / A) |))) # Meg kell számolni
# # M_1 használni a#color (kék) "gradiens képlet" #
#COLOR (piros) (bar (ul (| színű (fehér) (A / A) színes (fekete) (m = (y_2-y_1) / (x_2-x_1)) színe (fehér) (A / A) |))) # hol
# (x_1, y_1) "és" (x_2, y_2) "2 koordinátapont." A 2 pont itt (15, -22) és (12, -15)
# RArrm_1 = (- 15 - (- 22)) / (12-15) = 7 / (- 3) = - 7/3 # És így
# -7 / 3xxm_2 = -1 #
# RArrm_2 = (- 1) / (- 7/3) = 3/7 # Ezért a két adott ponton áthaladó vonalra merőleges vonal meredeksége
# M = 3/7 #
Egy vonal egyenlete 2x + 3y - 7 = 0, talál: - (1) a vonal (2) lejtése, az adott vonalra merőleges vonal egyenlete, és az x-y + 2 = vonal metszéspontján áthaladva. 0 és 3x + y-10 = 0?
-3x + 2y-2 = 0 szín (fehér) ("ddd") -> szín (fehér) ("ddd") y = 3 / 2x + 1 Első rész sok részletben, amely bemutatja az első elvek működését. Ha egyszer használják ezeket, és a parancsikonokat használják, akkor sokkal kevesebb sort használunk. szín (kék) ("Határozza meg a kezdeti egyenletek elkapását") x-y + 2 = 0 "" ....... egyenlet (1) 3x + y-10 = 0 "" .... egyenlet ( 2) Kivonja az x-t az Eqn (1) mindkét oldaláról, megadva a -y + 2 = -x-t Mindkét olda
Az n vonal áthalad a (6,5) és (0, 1) pontokon. Mi a k vonal y-metszete, ha a k vonal merőleges az n vonalra és áthalad a ponton (2,4)?
A 7. ábra a k vonal y-metszete. Először, keressük meg az n vonal vonalát. (1-5) / (0-6) (-4) / - 6 2/3 = m Az n vonal lejtése 2/3. Ez azt jelenti, hogy a k vonal vonalának meredeksége, amely merőleges az n vonalra, a 2/3 vagy -3/2 negatív reciprok. Tehát az eddigi egyenletünk: y = (- 3/2) x + b A b vagy az y-metszés kiszámításához csak csatlakoztassa (2,4) az egyenletbe. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Az y-elfogás tehát 7
Mekkora az egyenlet az (-1,1) -en áthaladó és az alábbi pontokon áthaladó vonalra merőleges vonal: (13,1), (- 2,3)?
15x-2y + 17 = 0. A P (13,1) & Q (-2,3) pontokon áthaladó vonal m 'értéke m' = (1-3) / (13 - (- 2)) = - 2/15. Tehát, ha a lejtőn a reqd. a vonal m, mint a reqd. A vonal a PQ vonalhoz tartozó bot, mm '= - 1 rArr m = 15/2. Most használjuk a Slope-Point Formulát a reqd számára. vonal, amelyről ismert, hogy áthalad a ponton (-1,1). Így az eqn. a reqd. vonal, y-1 = 15/2 (x - (- 1)), vagy 2y-2 = 15x + 15. rArr 15x-2y + 17 = 0.