Legyen, a koordináta
Tehát, ha
Most, a középpontja
egyértelműen, ez a pont lesz
Így,
vagy,
És ez is hazudik
így,
vagy,
Tehát a koordináta van
Az xy-síkban lévő l vonal grafikonja áthalad a pontokon (2,5) és (4,11). Az m vonal vonalának -2-es lejtése és 2-es metszete van. Ha az (x, y) pont az l és m vonal metszéspontja, akkor mi az y értéke?
Y = 2 1. lépés: Az l vonal egyenletének meghatározása A meredekség képlettel m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Most pontpont meredeksége az egyenlet y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 2. lépés: Az m sor egyenletének meghatározása Az x-elfogás mindig y = 0. Ezért az adott pont (2, 0). A lejtőn a következő egyenlet van. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 3. lépés: Az egyenletek rendszerének írása és megoldása A rendszer megoldását szeret
Legyen A (x_a, y_a) és B (x_b, y_b) két pont a síkban, és hagyja, hogy P (x, y) legyen az a pont, amely osztja a sávot (AB) k: 1 arányban, ahol k> 0. Mutassa meg, hogy x = (x_a + kx_b) / (1 + k) és y = (y_a + ky_b) / (1 + k)?
Lásd az alábbi bizonyítékot Kezdjük a vec (AB) és a vec (AP) kiszámításával. Az x vec (AB) / vec (AP) = (k + 1) / k (x_b-x_a) / (x-x_a) = (k + 1) / k Szorzás és átrendezés (x_b-x_a) (k) = (x-x_a) (k + 1) x (k + 1) x = kx_b-kx_a + kx_a + x_a (k + 1) megoldása ) x = x_a + kx_b x = (x_a + kx_b) / (k + 1) Hasonlóképpen az y (y_b-y_a) / (y-y_a) = (k + 1) / k ky_b-ky_a = y (k +1) - (k + 1) y_a (k + 1) y = ky_b-ky_a + ky_a + y_a y = (y_a + ky_b) / (k + 1)
Mi a valószínűsége annak, hogy mind a négy normális? Ez a három normális lesz, és egy albínó? Két normál és két albínó? Egy normális és három albínó? Mind a négy albínó?
() Ha mindkét szülő heterozigóta (Cc) hordozó, minden terhességben 25% esélye van egy albínó születésének, azaz 1-nek 4-ben. Tehát minden terhességben 75% esélye van egy normális (fenotípusos) gyermek születésének. azaz 3 in 4. Minden normál születés valószínűsége: 3/4 X 3/4 X 3/4 X 3/4 kb 31% Minden albínó születésének valószínűsége: 1/4 X 1/4 X 1/4 X 1 / 4 kb 0,39% Két normál és két albínó születésének valósz&