Az M pont koordinátái (x, -3). Ha a távolság az M ponttól az y tengelyig 9 egység, az x értékek listája?
X {-9, + 9} Az általánosított koordinátához: (a, b) a az y tengelytől való eltolódást jelenti, és b az x tengelytől való elmozdulást jelenti. Ha az y-tengelytől való távolság 9 egység, akkor az y-tengelytől az eltolás +9.
Az A (-4,1) pont normál (x, y) koordináta síkban van. Mi legyen a B pont koordinátái úgy, hogy az x = 2 vonal az ab merőleges bisectorja legyen?
Legyen, a B koordinátája (a, b) Tehát, ha az AB merőleges az x = 2 értékre, akkor az egyenlete Y = b, ahol b konstans, mivel az x = 2 vonal lejtése 90 ^ @, ezért a merőleges vonal 0 ^ @ most lesz, az AB középpontja ((-4 + a) / 2), ((1 + b) / 2) egyértelműen, ez a pont x = 2 lesz. (-4 + a) / 2 = 2 vagy a = 8 És ez is az y = b szóra, (1 + b) / 2 = b vagy b = 1 lesz, így a koordináta (8,1 )
Az A pont (-2, -8), a B pont pedig (-5, 3). Az A pontot (3pi) / 2 forgatjuk az óramutató járásával megegyező irányban az eredet körül. Melyek az A pont új koordinátái és milyen mértékben változott az A és B pont közötti távolság?
Legyen A, (r, theta) kezdeti poláris koordinátája Az A kezdeti derékszögű koordinátája (x_1 = -2, y_1 = -8) Így 3pi / után írhatunk (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta). 2 az óramutató járásával megegyező irányban az A új koordinátája x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + teta ) = - rsin (3pi / 2-theta) = rcostheta = -2 A kezdeti távolsága B-től (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = sqrt130 végső távolság az A új pozíci