Hogyan találja meg a z, z ^ 2, z ^ 3, z ^ 4 értékeket, ha z = 1/2 (1 + sqrt3i)?

Hogyan találja meg a z, z ^ 2, z ^ 3, z ^ 4 értékeket, ha z = 1/2 (1 + sqrt3i)?
Anonim

Válasz:

#z = cos (pi / 3) + izin (pi / 3) #

# z ^ 2 = cos (2pi / 3) + izin (2pi / 3) = 1/2 (-1 + sqrt (3) i) #

# z ^ 3 = cos (3pi / 3) + isin (3pi / 3) = -1 #

# z ^ 4 = cos (4pi / 3) + izin (4pi / 3) = -1/2 (1 + sqrt (3) i) #

Magyarázat:

A legegyszerűbb módszer a De Moivre tételének használata. Komplex szám esetén # Z #

# z = r (costheta + isintheta) #

# z ^ n = r ^ n (cosntheta + isinntheta) #

Tehát komplex számunkat poláris formává szeretnénk átalakítani. A modulus # R # összetett szám # A + bi # által adva

#r = sqrt (a ^ 2 + b ^ 2) #

#r = sqrt ((1/2) ^ 2 + (sqrt (3) / 2) ^ 2) = sqrt (1/4 + 3/4) = 1 #

A komplex szám az Argand-diagram első negyedében lesz, így az érv a következő:

#theta = tan ^ (- 1) (b / a) #

#theta = tan ^ (- 1) ((sqrt (3) / 2) / (1/2)) = tan ^ (- 1) (sqrt (3)) = pi / 3 #

#z = cos (pi / 3) + izin (pi / 3) #

# z ^ 2 = cos (2pi / 3) + izin (2pi / 3) = 1/2 (-1 + sqrt (3) i) #

# z ^ 3 = cos (3pi / 3) + isin (3pi / 3) = -1 #

# z ^ 4 = cos (4pi / 3) + izin (4pi / 3) = -1/2 (1 + sqrt (3) i) #