Válasz:
Magyarázat:
A 4 egész szám első három kifejezése a számtani P. és az utolsó három kifejezés a Geometric.P.-ben található. Hogyan találjuk meg ezeket a 4 számot? (1. + utolsó kifejezés = 37) és (a két egész szám összege közepén van) 36)
"A Reqd. Integers", 12, 16, 20, 25. T_1, t_2, t_3 és t_4 kifejezéseket hívjuk, ahol t_i ZZ-ben, i = 1-4. Tekintettel arra, hogy a t_2, t_3, t_4 kifejezések GP-t alkotnak, t_2 = a / r, t_3 = a, és t_4 = ar, ahol, ane0 .. Tekintettel arra is, hogy t_1, t_2 és t_3 AP-ben 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Így összesen, van, a Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, és t_4 = ar. A megadott értékek szerint t_2 + t_3 = 36rArra / r + a = 36, azaz a (1 + r) = 36r ....................... .................................... (ast_1). Tovább
Hogyan használná a képleteket a hatalmak csökkentésére, hogy átírja a kifejezést az első kozin erejében? cos ^ 4 (x) sin ^ 4 (x)
Rarrcos ^ 4x * sin ^ 4x = 1/128 [3-4cos4x + cos8x] rarrcos ^ 4x * sin ^ 4x = 1/16 [(2sinx * cosx) ^ 4] = 1/16 [sin ^ 4 (2x)] = 1/64 [(2sin ^ 2 (2x)] ^ 2 = 1/64 [1-cos4x] 2 = 1/64 [1-2cos4x + cos ^ 2 (4x)] = 1/128 [2-4cos4x + 2cos ^ 2 (4x)] = 1/128 [2-4cos4x + 1 + cos8x] = 1/128 [3-4cos4x + cos8x]
Használja a teljesítménycsökkentő identitásokat a sin ^ 2xcos ^ 2x írására az első kozin erejében?
Sin ^ 2xcos ^ 2x = (1-cos (4x)) / 8 sin ^ 2x = (1-cos (2x)) / 2 cos ^ 2x = (1 + cos (2x)) / 2 sin ^ 2xcos ^ 2x = ((1 + cos (2x)) (1-cos (2x))) / 4 = (1-cos ^ 2 (2x)) / 4 cos ^ 2 (2x) = (1 + cos (4x)) / 2 (1- (1 + cos (4x)) / 2) / 4 = (2- (1 + cos (4x))) / 8 = (1-cos (4x)) / 8