Válasz:
Igen.
Magyarázat:
Az egységvektorok definíció szerint hossza = 1.
Az ortogonális vektorok definíció szerint egymásra merőlegesek, és így egy jobb háromszöget alkotnak. A vektorok közötti távolság úgy tekinthető, hogy ez a jobb háromszög hypotenususát jelenti, és ennek hosszát a pythagorai tétel adja meg:
mivel ebben az esetben a és b mindkét = 1, van
SOK SZERENCSÉT
A Lollypop város hideg napján a minimális és maximális hőmérsékletet 2x-6 + 14 = 38 lehet modellezni. Melyek a minimális és maximális hőmérsékletek ezen a napon?
X = 18 vagy x = -6 2 | x-6 | + 14 = 38 Kivonás 14-re mindkét oldalra: 2 | x-6 | = 24 Két részre osztás mindkét oldalon: | x-6 | = 12 Most a funkciómodulnak magyarázható: x-6 = 12 vagy x-6 = -12 x = 12 + 6 vagy x = -12 + 6 x = 18 vagy x = -6
Legyen veca = <- 2,3> és vecb = <- 5, k>. Keressük k-t úgy, hogy a veca és a vecb ortogonálisak legyenek. Keresse meg k-t úgy, hogy a és b ortogonális legyen?
A (z) vec {a} quad és a quad vec {b} quad pontosan akkor fog ortogonálisan megjelenni, amikor: "jelentkezzen be a quad" felirat qquad qquad qquad quad / 3. # "Emlékezzünk rá, hogy két vektor esetében:" quad vec {a}, vec {b} quad ": van:" quad vec {a} quad "és" vec vec {b} quad " ortogonális "squad hArr quad quad vec {a} cdot vec {b} = 0." Így: "quad <-2, 3> quad" és "qu <-5, k> quad quad "ortogonális" quad quad hArr qquad <-2, 3> cdot <-5, k> = 0 qquad hArr qqua
Nem igazán értem, hogyan kell ezt csinálni, valaki megtanulhat lépésről lépésre ?: Az exponenciális bomlási grafikon mutatja az új hajó várható értékcsökkenését, amely 3500-at ad el 10 év alatt. -Vázolja meg a grafikon exponenciális funkcióját - használja a keresendő funkciót
F (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (- 0.2824326201x) f (x) = 3500e ^ (- 0.28x) Csak a első kérdés, mivel a többit levágták. Van egy = a_0e ^ (- bx) A grafikon alapján úgy tűnik, hogy (3,1500) 1500 = 3500e ^ (- 3b) e ^ (- 3b) = 1500/3500 = 3/7 -3b = ln ( 3/7) b = -ln (3/7) /3=-0.2824326201~~-0.28 f (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (-0.2824326201x) f (x) = 3500e ^ (- 0.28x)