Mi az sqrt (80xy ^ 2z)?

Mi az sqrt (80xy ^ 2z)?
Anonim

Válasz:

# 4 | y | sqrt (5xz) #

Magyarázat:

Ennek egyszerűsítése érdekében két fontos tulajdonságot kell használnunk:

1. #sqrt (a * b) = sqrta * sqrtb #

2. #sqrt (a ^ 2) = | a | #

Először is, szüneteljünk #80# elsődleges tényezőknek.

# 80 = szín (piros) 2 * 40 #

# 40 = szín (piros) 2 * 20 #

# 20 = szín (piros) 2 * 10 #

# 10 = szín (piros) 2 * szín (piros) 5 #

Így # 80 = szín (piros) 2 * szín (piros) 2 * szín (piros) 2 * szín (piros) 2 * szín (piros) 5 #

A fenti tulajdonságok alapján láthatjuk, hogy:

#sqrt (80xy ^ 2Z) #

# = sqrt (2 * 2 * 2 * 2 * 5 * x * y ^ 2 * z) #

Az első szabályt arra szeretnénk használni, hogy "kivonjuk" a tökéletes négyzeteket, majd a második szabályt, hogy azokat nem radikális számokká alakítsuk.

# = sqrt (2 * 2) * sqrt (2 * 2) * sqrt (y ^ 2) * sqrt (5 * x * z) #

#2*2# jelentése #2^2#, így ez lesz:

# = | 2 | * | 2 | * | y | * sqrt (5xz) #

# = 4 | y | sqrt (5xz) #

Végleges válasz