Válasz:
Lásd az alábbi részleteket
Magyarázat:
Ez egy geometriai progresszió
Tudjuk, hogy a geometriai progresszió minden egyes kifejezését az előbbi kifejezés állandó tényezővel szorozzák, Így a mi esetünkben
Összegeznünk kell
Ezt a "kézi" folyamat vagy a geometriai progresszió összegösszetételének alkalmazásával teheti meg
A 4 egész szám első három kifejezése a számtani P. és az utolsó három kifejezés a Geometric.P.-ben található. Hogyan találjuk meg ezeket a 4 számot? (1. + utolsó kifejezés = 37) és (a két egész szám összege közepén van) 36)
"A Reqd. Integers", 12, 16, 20, 25. T_1, t_2, t_3 és t_4 kifejezéseket hívjuk, ahol t_i ZZ-ben, i = 1-4. Tekintettel arra, hogy a t_2, t_3, t_4 kifejezések GP-t alkotnak, t_2 = a / r, t_3 = a, és t_4 = ar, ahol, ane0 .. Tekintettel arra is, hogy t_1, t_2 és t_3 AP-ben 2t_2 = t_1 + t_3 rArr t_1 = 2t_2-t_3 = (2a) / ra. Így összesen, van, a Seq., T_1 = (2a) / r-a, t_2 = a / r, t_3 = a, és t_4 = ar. A megadott értékek szerint t_2 + t_3 = 36rArra / r + a = 36, azaz a (1 + r) = 36r ....................... .................................... (ast_1). Tovább
A GP első négy ciklusának összege 30, az utolsó négy kifejezés 960. Ha a GP első és utolsó ciklusa 2 és 512, akkor keresse meg a közös arányt.
2root (3) 2. Tegyük fel, hogy a szóban forgó GP közös aránya (cr) r és n ^ (th) kifejezés az utolsó kifejezés. Tekintettel arra, hogy a GP első ciklusa 2.:. "A GP" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) , 2R ^ (n-2), 2r ^ (n-1)}. Adott, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (csillag ^ 1), és 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (csillag ^ 2). Azt is tudjuk, hogy az utolsó kifejezés 512.:. R ^ (n-1) = 512 .................... (csillag ^ 3). Most, (csillag ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, azaz (r ^ (n-
Ismerve a képletet az N egész számok összegére a) mi az összege az első N egymást követő négyzetes egész számból, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Az első N egymást követő kocka egész számok összege Sigma_ (k = 1) ^ N k ^ 3?
S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Összeg_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 összeg_ {i = 0} ^ ni ^ 3 = összeg_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + összeg_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ n + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 az összegzéshez {i = 0} ^ ni ^ 2 összeg_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni, de az összeg_ {i = 0} ^ ni = ((n + 1) n) / 2 &